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The genetic code is redundant with most amino acids using multi-
ple codons. In many organisms, codon usage is biased toward par-
ticular codons. Understanding the adaptive and nonadaptive forces
driving the evolution of codon usage bias (CUB) has been an area of
intense focus and debate in the fields of molecular and evolution-
ary biology. However, their relative importance in shaping genomic
patterns of CUB remains unsolved. Using a nestedmodel of protein
translation and population genetics, we show that observed gene
level variation of CUB in Saccharomyces cerevisiae can be explained
almost entirely by selection for efficient ribosomal usage, genetic
drift, and biased mutation. The correlation between observed co-
don counts within individual genes and our model predictions is
0.96. Although a variety of factors shape patterns of CUB at the
level of individual sites within genes, our results suggest that se-
lection for efficient ribosome usage is a central force in shaping
codon usage at the genomic scale. In addition, our model allows
direct estimation of codon-specific mutation rates and elongation
times and can be readily applied to any organism with high-
throughput expression datasets. More generally, we have devel-
oped a natural framework for integrating models of molecular
processes to population genetics models to quantitatively estimate
parameters underlying fundamental biological processes, such
a protein translation.

ribosome overhead cost | protein production rate

For many organisms, the preferential usage of certain codons,
commonly referred to as codon usage bias (CUB), is strongly

correlated with corresponding tRNA abundances and expression
levels (1, 2). Explanations for these correlations abound; the most
favored ones include selection against translational errors (3–5),
selection for translational efficiency (6–8), effects on protein
folding (9), and stability of mRNA secondary structures (10, 11).
Because different combinations of these factors could lead to very
similar patterns of codon usage, their relative importance in
shaping the evolution of CUB is unknown (10, 12, 13). We believe
that this uncertainty over their relative importance is, in large
part, attributable to a lack of mechanistic models of processes
hypothesized to give rise to these patterns (exceptions are found
in refs. 5, 6, 13, and 14). Although most theories of codon usage
predict that the degree of bias in codon usage should increase
with gene expression (1, 4, 15), they lack any specific quantitative
predictions about the rate and nature of these changes. This is
because most commonly used indices of CUB, such as frequency
of optimal codons (Fop) (1), codon adaptation index (CAI) (16),
and codon bias index (CBI) (17), are both heuristic and aggregate
measures of CUB and fail to define explicitly the factors re-
sponsible for the evolution of CUB. In contrast, we show that
a mechanistic model of protein translation that explicitly includes
the effects of biased mutation, genetic drift, and selection for
efficient ribosome usage can explain the genome-wide codon
usage patterns in Saccharomyces cerevisiae. Although ours is not
the first attempt at using mechanistic models to explain CUB in
a population genetics context (5, 6), it is unique in its ability to

estimate codon-specific parameters and quantitatively predict
how codon frequencies change with gene expression. We find that
our model can explain ∼92% of the observed variation in CUB
across the S. cerevisiae genome.

Model
Protein synthesis is the most energetically expensive process
within a cell (19). During the log-phase of growth in S. cerevisiae,
about 60% of transcriptional machinery is devoted to making
about 2,000 ribosomes every minute (20). Because ribosomes are
large complexes with a finite life span and are expensive to
manufacture, one would expect strong selection for their efficient
usage during protein translation (6, 21–23). Coding sequences
that use faster codons free up ribosomes from the mRNA, leading
to smaller polysome sizes as well as an increase in the pool of free
ribosomes. Given that protein translation is limited by the initi-
ation rate, an increased pool of free ribosomes will lead to an
overall increase in the translation initiation and protein pro-
duction rate (6, 24). Thus, we explicitly define selection for
translation efficiency as selection for an increased pool of free
ribosomes (6, 22). In the absence of other factors, selection for
translation efficiency should favor coding sequences that use
codons with shorter elongation times and the strength of this
selection should increase with gene expression (6, 7, 23, 25). If
selection for translational efficiency is a major force driving the
evolution of CUB in S. cerevisiae, we should be able to predict the
CUB of a gene based on the differences in elongation times of
synonymous codons, mutational bias, and its expression level.
Based on the work of Gilchrist (5) and Gilchrist et al. (15), we

begin our model by first noting that in the absence of translation
errors, the expected cost-benefit ratio (cost for short) for pro-
duction of a single functional protein is simply

ηðx→Þ ¼ C
X61
i¼1

xi ti; [1]

where xi is the number of codons of type i among the 61 sense
codons used within a given coding sequence x→¼ fx1; x2; . . . x61g,
ti is the expected elongation time for codon i, and C is a scaling
factor that represents the overhead cost of ribosome usage in
ATPs per second. Codons that have shorter elongation times will
lead to lower costs η, and hence are expected to be selected over
their coding synonyms. Based on the work of Gilchrist (5), we
assume an exponential fitness function wðx→jϕÞ∝ e− qϕηðx→Þ, where
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q is the scaling constant seconds per ATP determining the re-
lationship between the rate of ATP usage and fitness w and ϕ is
a measure of gene expression, specifically protein production
rate (proteins per second). Modeling the cost of protein pro-
duction in terms of ATP implicitly assumes that the organism is
resource-limited and there exists selection for efficient ATP usage
to maximize reproductive output. However, if the organism is not
limited by resources, one would expect selection to maximize re-
productive rate instead (26); in such a case, parameters C and q
would be ATP-independent. This would, however, not affect the
behavior of our model.
It is also important to note the distinction between the protein

production rate and the translation rate of a ribosome across an
mRNA. This lack of distinction has been the source of confusion
over the role of gene expression in shaping patterns of codon
usage in the past (6, 24). In addition, although the protein pro-
duction rate of a gene changes during a single cell’s lifetime, the ϕ
value used here is the target time-averaged rate at which the
protein will be produced. In this scenario, a change from an op-
timal codon to a suboptimal codon does not affect ϕ but, instead,
affects the cost of meeting the target ϕ. Using the cost of pro-
ducing a protein η as the phenotype, we calculate the probability
of observing a particular coding sequence given its expression
level, Pðx→jϕÞ. Pðx→jϕÞ is defined for each coding sequence in the
synonymous codon genotype space Sc for a given protein. Under
the Fisher–Wright process (27–29), this probability is

P½→xjϕ�∝ wðx→jϕÞNe ∏
61

i¼1
μxii ; [2]

where Ne is the effective population size and μi is the sum of
mutation rates to codon i from its synonymous codons (29).
Simply put, Pðx→jϕÞ, the probability of observing a particular
synonymous codon genotype for a given protein, is a combined
function of mutation bias ∏61

i¼1μ
xi
i , natural selection for trans-

lational efficiency w, and genetic drift Ne. Given an expression
level ϕ, the probability of observing a set of codons for one
amino acid is independent of the probability of observing a set of
codons for another amino acid (SI Text, Analytical Solutions of
the Model). This independence allows us to calculate the ex-
pected frequencies of codons within an amino acid independent
of codon compositions of other amino acids. The resulting ex-

pected frequency of codon i of amino acid aak that has nk syn-
onymous codons is given by

E½ fijϕ; aak� ¼ μi e−NeqCϕtiP
j∈nk μje

−NeqCϕtj
: [3]

Eq. 3 describes how the expected frequency of a given codon
changes with gene expression ϕ at its mutation-selection-drift
equilibrium. To compare our model predictions with observed
codon usage frequencies, we looked at the 4,674 verified nuclear
genes that lack internal stops in S. cerevisiae (5) (Dataset S1).
Because time-average target protein production rates of genes
are not available for any organism, we use estimates of protein
production rates during log growth as proxies. Empirical esti-
mates of protein production rate ϕ were obtained from a study
by Gilchrist (5), which combines mRNA abundance (30) and
ribosome occupancy datasets (31, 32) (Dataset S1). The effective
population size was set to Ne = 1.36 × 107 based on the effective
population size of its closely related species Saccharomyces par-
adoxus (19). Note that because Ne is scaled by qC in Eq. 3, any
error in our estimate of Ne will only affect our estimates of qC
and not the behavior of our predictions.

Results
Model Behavior. The general behavior of our model is illustrated
in Fig. 1, which shows the simple case of one amino acid with two
codons. It demonstrates how expected frequencies of the codons
change with gene expression with respect to differences in the
elongation times of the codons Δtij = ti − tj as well and their
relative mutation rate μi/μj. As expected, codon usage in genes
with low expression is primarily determined by their relative
mutation rates, whereas codon usage in genes with high expres-
sion is determined by the differences in their elongation times.
When both natural selection for translation efficiency and mu-
tation biases favor the same codon, the lines representing ex-
pected frequencies of codons (Fig. 1, red lines) do not cross.
However, when the direction of mutation bias is opposite to that
of natural selection, the lines representing expected frequencies
of codons cross (Fig. 1, blue lines).

Model Fit to S. cerevisiae Genome. Using Eq. 2, we calculated the
maximum likelihood estimates for the composite parameter qC,
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Fig. 1. Effect of varying relative mutation rate (μi/μj), elongation time (Δtij), and protein production rate (ϕ) on the expected codon frequencies (E[f]) in
a hypothetical two-codon amino acid. (A) Effect of changing μi/μj on E[f] with ϕ. Solid lines represent the codon with a longer elongation time t1, and dotted
lines represent the codon with a shorter elongation time t2. Mutation bias has a greater effect on E[f] at low ϕ, whereas at very high ϕ, the E[f] of codons
converge to the same values, irrespective of μi/μj. (B) Effect of changing ti − tj on their expected frequencies E[f] with respect to ϕ. Solid lines represent the
codon with a lower relative mutation rate μ1, and dotted lines represent the codon with a higher mutation rate μ2. Differences in elongation times between
the two codons ti − tj has little effect on E[f] at low ϕ. However, at high ϕ, as ti − tj changes, so does the difference in their expected frequencies E[f].
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codon-specific differences in elongation time Δtij, and relative
mutation rate μi/μj using 4,674 genes of the S. cerevisiae genome
(more details are provided in Materials and Methods and Tables
S1 and S2). Although our model uses 2(k − 1) parameters for
each amino acid with k codons, we show that it is far from being

overparameterized because it uses genome-scale datasets (SI
Text, Argument Against Model Overparametrization). The fit of our
model predictions with observed data is illustrated in Fig. 2.
Specifically, Fig. 2 shows how the observed and predicted codon
frequencies change with gene expression ϕ for all the amino acids
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Fig. 2. Observed and predicted changes in codon frequencies with gene expression, specifically protein production rate ϕ. A–S correspond to specific amino
acids, where codons ending in A or T are shown in shades of blue and codons ending in G or C are shown in shades of red. Solid dots and vertical bars
represent mean ±1 SD of observed codon frequencies of genes in a given bin. The expected codon frequencies under our model are represented by solid lines.
(T) Histogram of genes in each bin. We used k − 1 codons of an amino acid with k codons in estimating correlation coefficients. ρM represents the Pearson
correlation between the mean of observed codon frequencies within a bin and predicted codon frequencies at mean ϕ value. ρc represents the Pearson
correlation between observed codon counts and predicted codon counts of all genes at their individual ϕ value.
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that use multiple codons. Because the set of synonymous codons
for Ser occurs in blocks of two and four codons separated by more
than a single mutation step, we treat each of the blocks as sepa-
rate amino acids, Ser2 and Ser4, respectively. The fit of our model
can be quantified on a per-amino acid basis based on the Pearson
correlation ρM between the mean of binned observed codon fre-
quencies and predicted codon frequencies at the mean ϕ value.
The ρM values ranged from 0.72 to 0.99, with a median value
of 0.936.
Although many indices of adaptation have been proposed to

estimate the degree of codon bias within a gene, there exists no
method or index that makes predictions on codon counts of in-
dividual genes. For instance, if a particular gene has a protein
production rate ϕ, what should the distribution of its codons be
given its amino acid sequence? To address this question directly,
we used our estimates of Δtij and μi/μj (Tables S1 and S2) to
evaluate on a per-gene basis the expected codon frequencies for
each amino acid using Eq. 3 (Dataset S2). We find that the cor-
relation between observed and predicted codon counts is ρc =
0.959 (Fig. 3), explaining ∼92% of observed variation in codon
counts. Even at the level of individual amino acids, the corre-
lation coefficients ρc ranged from 0.81 to 0.99. All but two amino
acids had ρc > 0.9, indicating that the high correlation was
consistent across all amino acids. In summary, we find that our
model does an excellent job of predicting how the observed co-
don frequencies in S. cerevisiae change with gene expression ϕ.
One key insight from this work is that in S. cerevisiae for amino

acids with more than two codons, the frequencies of preferred
codons with similar elongation time Δtij ~ 0 can change in a
nonmonotonic manner with gene expression ϕ. For instance, in
the case of Thr, the frequency of codon ACT increases from low
to moderate levels of gene expression log(ϕ) but decreases at
high gene expression and is replaced by codon ACC. This non-
monotonic behavior is the result of complex interplay between
mutation biases and translation selection. Specifically, although
both codons ACC and ACT have shorter elongation times than
their other coding synonyms ACG and ACA, codon ACC has the

shortest elongation time. However, unlike codon ACC, ACT is
favored by mutation bias; thus, its frequency initially increases
with gene expression. We call this phenomenon “mutational in-
ertia,” whereby the frequency of a suboptimal codon transiently
increases with gene expression attributable to mutation bias. This
nonmonotonic behavior runs counter to traditional explanations,
where the frequency of an optimal codon is expected to mono-
tonically increase and that of a suboptimal codon is expected
to monotonically decrease with gene expression (16, 33). We
observed these effects of mutational inertia in most amino acids
with more than two codons. Although nonmonotonic changes in
codon frequencies with gene expression have been documented
previously (34), the mechanisms responsible for this behavior
have not been put forth. We believe this interesting and complex
interplay between mutation biases and selection for efficient
translation has been obscured because of an overemphasis on
indices in studies of CUB. Our study illustrates the advantages of
the model-based approach used here over heuristic approaches.
In addition and as indicated by the crossing of lines representing
codon frequencies, 7 of 10 amino acids with two codons in Fig.
2 D–J show mutation biases in a direction opposite to that of
natural selection. In other words, codons with high frequencies
in low-expression genes are not the same as the ones preferred in
high-expression genes. Along with explaining these previously
described patterns (35–37), we quantify the changes in codon
frequencies with gene expression.
In addition to describing the genome-scale patterns of codon

usage, our model allows for estimation of relative mutation rate
μi/μj and differences in elongation times of these codons Δtij on
a per-amino acid basis directly from the genome sequence and
expression datasets. Interestingly, we find that estimates of rela-
tive mutation rates sometimes differed between amino acids. For
instance, in the case of two-codon amino acids (Lys, Gln, and
Glu), the NNA codons were always favored over NNG codons.
However, the relative mutation rate μNNG/μNNA ranged from
0.45 to 0.68, with a mean of 0.546. These small but significant
differences (t test, P < 10−9 for every pair of amino acids) in the
estimation of relative mutation rate may be attributable, in part, to
the fact that our model does not allow for nonsynonymous sub-
stitutions, some of which may behave in a nearly neutral man-
ner, especially in genes with low ϕ values.
We also compared our estimates of Δtij with estimates based

on tRNA gene copy numbers as a proxy for tRNA abundances
and wobble penalties (Materials and Methods). We find that these
independently obtained estimates of Δtij are highly correlated
(ρ = 0.801; Fig. 4).

Model Fit vs. Model Predictions. To demonstrate the predictive
value of our model, we randomly partitioned the S. cerevisiae ge-
nome into two sets of 2,337 genes each with no significant bias in
their distribution of gene expression levels ϕ (t test, P > 0.4).
Parameters estimated using half of the genome were found to be
highly correlated with our previous estimates based on the entire
genome (ρ > 0.99 for bothΔtij and μi/μj; Fig. S1).We then used the
parameters estimated using the first set of genes to predict gene-
specific codon counts in the second set of genes. The correlation
coefficient between observed and predicted codon counts at the
level of individual genes was 0.96 (Figs. S2 and S3). Because we do
not have ribosome occupancy datasets to estimate protein pro-
duction rates for most organisms, we estimated Δtij and μi/μj using
mRNA abundances (5, 30) as proxies for protein production rate
ϕ. We found a very high correlation between parameters esti-
mated usingmRNAabundances and protein production rates (ρ>
0.97; Figs. S4 and S5). Because our model is based on mechanistic
principles of protein translation, these parameters can be directly
related to specific biological processes underlying protein trans-
lation. Our work demonstrates that, in principle, these parameters
can be estimated directly from genomic and expression datasets,

Fig. 3. Correlation between observed codon counts and predicted codon
counts of individual genes. We used codon counts of k − 1 codons of an
amino acid with k codons. Ignoring Met and Trp (one-codon amino acids)
and splitting Ser into two blocks of four and two codons, there are 19
unique amino acid sets. Hence, the number of data points used is 4,674 ×
(59 − 19) = 186,960. We find a very high correlation (ρ = 0.959, P < 1015)
between our model predictions and observed counts. (Inset) Distribution of
correlation coefficients at the level of individual amino acids, indicating that
our high correlation is not biased by specific amino acids and that we have
a high correlation across all amino acids.
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as shown above. Estimation of these parameters can thus be easily
extended to any sequenced organisms for which genome-scale
mRNA expression datasets exist.

Discussion
Broader Interpretation of Δtij. The high correlation between esti-
mates of Δtij from independent sources of genomic information
(Fig. 4) suggests that our interpretation of the term Δtij is con-
sistent with selection for translation efficiency as a major force in
shaping patterns of codon usage. However, from a purely math-
ematical standpoint, the parameter Δtij is akin to the additive
fitness component used by Sella andHirsh (29), scaled by ϕ. Thus,
its value can broadly be interpreted as an expression level-
dependent selective coefficient associated with the specific codon
pair. In the future, this broader interpretation should allow us to
compare our genome-based estimates of Δtij with values expected
under alternate hypotheses of the factors responsible for shaping
codon usage patterns. For example, in the case of Cys, an in-
terpretation of Δtij is difficult to justify based on a naive model of
estimating elongation times from tRNA abundances. In S. cer-
evisiae, Cys is coded by a single tRNA, where the noncanonical
codon TGT is recognized by wobble and assumed to be elongated
at a slower rate than its synonym TGC (13, 38). Thus, our esti-
mates of tTGT − tTGC < 0 cannot be explained on the basis of
elongation times alone, because the sign of ΔtTGT,TGC is opposite
to that expected based on tRNA abundances and wobble. A va-
riety of factors could potentially explain this discrepancy. First,
because of its unique ability to form disulfide linkages, Cys might
be under stronger selection to minimize missense errors than
other amino acids. The fact that a codon with a slower elongation
rate might be better at minimizing missense errors has also been
predicted in a large number of other microorganisms (13). Sec-
ond, as noted by Bennetzen and Hall (17), codons with side-by-
side GC nucleotides may be selected against because of the high
binding energies between codon-anticodon pairs. Despite the fact
that Δtij can potentially be interpreted many ways, the high cor-
relation between our predicted Δtij and estimates of Δtij based
simply on tRNA gene copy numbers and wobble parameters (Fig.
4) indicates a mechanistic link between our estimates of Δt and
differences in elongation times of codons.
In summary, ourwork shows that genome-scale patternsof codon

usage can be largely explained by the effects of genetic drift, mu-
tational biases, and natural selection for efficient usage of ribo-

somes (i.e., translational efficiency). Although a variety of indices
have been proposed to estimate the degree of adaptation of a gene
based on its CUB, our method makes predictions in the opposite
direction as well (i.e., predicting codon counts of a gene, given
its expression level). Our model of translation efficiency also
allows us to estimate codon-specific elongation times (selection
coefficients) as well as relative mutation rates. In addition, we
make quantitative predictions on how individual codon frequen-
cies should change with gene expression in yeast. Although se-
lection for translational efficiency appears to be sufficient to
explain most of the genome-scale patterns of codon usage, this
does not preclude the effects of other selective forces on the
evolution of CUB. For instance, selection for translation accuracy
(minimizing translation missense errors) has long been argued to
be a dominant force in driving the evolution of CUB (3, 39, 40).
However, current data suggest that only ∼10–50% of missense
errors disrupt protein function (41, 42), and therefore cannot ex-
plain the high frequencies of ∼100% of mutationally disfavored
codons in Phe, Asn, and Tyr amino acids (Fig. 2). Moreover, the
assumptions underlying Akashi’s test (3) used to support the
translation accuracy hypothesis are not always justified (13).
Nevertheless, selection for translation accuracy can explain codon
usage at functionally and/or structurally critical sites of a protein
(40). Because codons that minimize missense errors may not
necessarily be the ones that minimize elongation times (13), our
model is likely insufficient to explain the codon usage at these
sites. Similarly, adaptation against nonsense errors has been
documented in S. cerevisiae (14, 15) and other organisms (43). In
addition, factors indirectly related to protein translation, such as
mRNA secondary structures at the 5′ region of a gene, have been
shown to be under selection for efficient binding of ribosomes to
mRNAs, and hence can affect the frequency of codon usage at
these sites (10, 11).
Clearly, although a number of selective mechanisms have been

proposed to explain and likely contribute to specific patterns of
codon usage, the combined effects of these forces in shaping
genomic patterns of codon usage are not well understood (4, 24).
To decipher the relative importance of these forces on the evo-
lution of CUB, mechanistic models that explicitly take into ac-
count tRNA competition and intraribosomal dynamics (13) as
well as effects of amino acid substitutions on protein structure and
function (42) need to be developed. As with our previous work
(5), our model demonstrates the strength of such an approach and
provides a natural framework for expansion to include other se-
lective forces as well. More generally, this approach will allow us
to estimate parameters underlying fundamental biological pro-
cesses, such as protein translation, quantitatively and to improve
our understanding of how evolutionary forces shape genomic
patterns and processes.

Materials and Methods
Estimation of Δtij and μi/μj from Observed Data. In the case of an amino acid
with k codons, the change in codon frequencies across the entire range
of gene expression can be determined by 2(k − 1) parameters for codon-
specific mutation rates and elongation times. For instance, in the case of
amino acids with two codons, the frequency of any one codon depends only
on the difference in the elongation times of the two codons and the ratio
of their mutation rates

E½x1jϕ� ¼ nμ1e−NeqCϕt1

μ1e−NeqCϕt1 þ μ2e−NeqCϕt2

¼ 1

1þ μ2
μ1
e−NeqCϕðt2 − t1Þ

:
[4]

Codon usage in genes with low-expression ϕ is thought to be determined
primarily by mutation biases (i.e., NeqCϕ ≈ 0). Because absolute mutation
rates to each codon cannot be estimated directly, as it is only their ratios that
affect codon usage, we estimated μi/μj by setting the mutation rate of an
arbitrarily chosen codon to 1. Codon counts in low-expression genes can
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Fig. 4. Correlation between our model-based estimates of Δtij with Δtij
estimated using tRNA gene copy numbers. We find a strong correlation (ρ =
0.801, P < 10−9) between our model estimates and estimates of Δtij based on
tRNA gene copy numbers, indicating that our estimates can be related to
other biological estimates, such as tRNA abundances, directly.
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then be assumed to follow a multinomial distribution with parameters de-
termined by their mutation rates. Thus, in the case of an amino acid with
two codons whose codon counts are x1 and x2, the maximum likelihood
estimate of relative mutation rate is approximately

μ2
μ1

≈
x2
x1

: [5]

Similarly, elongation times of codons affect codon usage only as their dif-
ferences (t1 − t2). Thus, during parameter estimation of elongation times, we
set the elongation time of an arbitrarily chosen codon within each amino
acid to 1 and estimated the differences in elongation times of other codons
with respect to that codon. We used the NEWUOA optimization algorithm
(44), which is utilized in R to estimate Δtij and μi/μj for an amino acid with k
codons and qC, by maximizing the following likelihood function (additional
details are provided in SI Text, Analytical Solutions of the Model).

Lik ðt→; μ→jϕ; x→Þ ¼ Pðx→jϕÞ ¼ ∏
k

i¼1

 
μie−NeqCϕtiPk
j¼1 μje−NeqCϕtj

!xi
: [6]

In addition, we estimated the maximum likelihood value of cqC ¼ 9:12 × 10− 7.

Estimation of Δtij from tRNA Gene Copy Numbers. To compare our estimates of
Δtij with an independent source of genomic information, we estimated Δtij
using tRNA gene copy numbers and wobble effects. Following the work of
Dong et al. (2) and Kanaya et al. (45), we use tRNA gene copy numbers in

yeast obtained from GtRNAdb (46) as proxies for tRNA abundances. We
assume that the expected waiting time at a codon ti is inversely proportional
to its cognate tRNA abundances based on an exponential waiting process

½tRNAi �∝Gene copy number of tRNAi ; [7]

ti ¼ a
½tRNAi � ×  wob

; [8]

where wob is the wobble penalty attributable to codon-anticodon mismatch
and a is a scaling constant. When a codon is recognized by its canonical
tRNA, we set wob = 1. Based on the work of Curran et al. (47) and Curran
and Lim (48), we assume a purine-purine or pyrimidine-pyrimidine wobble
penalty to be 39% and a purine-pyrimidine wobble penalty to be 36%. We
set the scaling constant a such that the harmonic mean of elongation rates
of all codons is 10 aa per second (5, 14).
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SI Text
S1. Analytical Solutions of the Model. One amino acid with two codons.
Consider a gene sequence of length n composed of a single two-
codon amino acid, whose average elongation times are t1 and t2.
Let x1 and x2 = n − x1 be the respective codon counts. The ex-
pected cost of ribosome usage during protein production is then
given as

ηðx→Þ ¼ C ∑
2

i¼1
xi ti; [S1]

¼ Cðx1t1 þ x2 t2Þ; [S2]

where C is the cost of ribosome usage in ATP per second. We
assume an exponential fitness function w described as

wðx→jϕÞ ¼ e− qϕηðx→Þ ¼ e− qϕCðx1 t1þx2 t2Þ; [S3]

where ϕ is the protein production rate, a measure of gene ex-
pression, and q is the scaling constant determining the rela-
tionship between cost of ATP usage to organismal fitness w.
Following the methods used in studies (1–4), the probability of

observing an allele across the entire genotype space at equilib-
rium is given by

P
�
x→jϕ� ¼ wð x!jϕÞNe

∑y∈Scwð y!jϕÞNe
; [S4]

where Ne is the effective population size and Sc is the entire
synonymous codon genotype space, which has 2n alleles in this
simple case. Because the cost of protein production is in-
dependent of codon order within a gene, multiple synonymous
alleles could give rise to the same cost η. In the case of two
codons, the number of alleles with the same cost is represented
by a binomial coefficient and for amino acids with more than two
codons, the combinations will be represented by a multinomial
coefficient

Pðx→jϕÞ ¼

�
n
x1

�
e−NeqϕCðx1 t1þx2t2Þ

∑n
y1¼0

�
n
y1

�
e−NeqϕCðy1t1þy2t2Þ

: [S5]

Let μ1 and μ2 represent the rate of mutations to the two codons,
as described by Sella and Hirsh (4).
Taking mutational biases into account, the probability of ob-

serving a given allele is given as

Pðx→jϕÞ∝ wðx→jϕÞNe ∏
2

i¼1
μxii ; [S6]

Pðx→jϕÞ ¼

�
n
x1

�
e−NeqCϕðx1t1þx2t2Þ∏2

i¼1μ
xi
i

∑n
y1¼0

�
n
y1

�
e−NeqCϕðy1 t1þy2t2Þ∏2

i¼1μ
yi
i

; [S7]

where x→¼ fx1; x2g.

Given the protein production rate ϕ (gene expression) of
a gene and the elongation time t of codons, the expected count of
each codon is given as

E½x1jϕ� ¼ ∑
n

x1¼0
x1Pðx→jϕÞ; [S8]

¼ ∑
n

x1¼0
x1

�
n
x1

�
e−NeqCϕðx1t1þx2 t2Þ∏2

i¼1μ
xi
i

∑n
y1¼0

�
n
y1

�
e−NeqCϕðy1t1þy2t2Þ∏2

i¼1μ
yi
i

; [S9]

¼ nμ1e−NeqCϕt1

μ1e−NeqCϕt1 þ μ2e−NeqCϕt2
; [S10]

and by symmetry

E½x2jϕ� ¼ nμ2e−NeqCϕt1

μ1e−NeqCϕt1 þ μ2e−NeqCϕt2
; [S11]

¼ n−E½x1jϕ�: [S12]

One amino acid with k codons.Using the methods described above, it
can be shown that for any amino acid with k codons, the expected
count of the ith codon is given as

E½xijϕ� ¼ nμie−NeqCϕti

∑k
j¼1μje−NeqCϕtj

: [S13]

Thus, the expected frequencies of each codon fi = xi/n are given
as

E½ fijϕ� ¼ μie−NeqCϕti

∑k
j¼1μje−NeqCϕtj

: [S14]

Variance around the expected value E[xi|ϕ] can also be calcu-
lated as

Var½xijϕ� ¼ ∑
n

xi¼0
ðxi −E½xijϕ�Þ2Pðfx1; x2;⋯; xkgÞ; [S15]

¼
n
�
∏k

j¼1μj
�
eNeqCϕ∑k

j¼1tj

�
∑k

j¼1μjeNeqCϕtj
�2 : [S16]

Multiple amino acids with varying number of codons. In the case of real
genes, which are composed of multiple amino acids, each with
a varying number of codons, the expected counts and frequencies
of codons can be estimated from the marginal distributions of
each amino acid. For instance, consider the simple case of two
amino acids with two codons each. The ribosomal overhead cost
of protein production is given as

ηðx→Þ ¼ Cðx11t11 þ x12t12 þ x21t21 þ x22t22Þ; [S17]

where xij is the number of codons of type j of amino acid i in the
gene. Let n1 = x11 + x12 and n2 = x21 + x22 be the counts of the
two amino acids in the gene. As previously, the probability of
observing an allele can be written as
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¼

�
n1
x11

�
∏2

j¼1μ
x1j
1j e

−Neðx11qCϕt11þx12qCϕt12Þ

∑n1
y11¼0

�
n1
y11

�
∏2

j¼1μ
x1j
1j e

−Neðx11qCϕt11þx12qCϕt12Þ
×

�
n2
x21

�
∏2

j¼1μ
x2j
2j e

−Neðx21qCϕt21þx22qCϕt22Þ

∑n1
y21¼0

�
n1
y11

�
∏2

j¼1μ
x2j
2j e

−Neðx21qCϕt21þx22qCϕt22Þ
;

[S19]

¼ Pðx→1j aa1ÞPðx→2j aa2Þ: [S20]

The marginal distribution of genotype space of a singe amino acid
is given as

∑
n2

x21¼0
Pðx→2jaa2Þ ¼ 1; [S21]

Pðx→1jaa1Þ ¼ ∑
n2

x21¼0
P
��

x→1; x
→
2
	�

: [S22]

Thus, the expected number of codons of a specific amino acid
based on the marginal distribution of that amino acid can be
calculated as

E½x11jϕ� ¼ ∑
n1

x11¼0
x11 ∑

n2

x21¼0
P
��

x→1; x
→
2
	�

; [S23]

¼ ∑
n1

x11¼0
x11Pðx→1jaa1Þ ∑

n2

x21¼0
Pðx→2jaa2Þ; [S24]

¼ ∑
n1

x11¼0
x11Pðx→1jaa1Þ; [S25]

¼ n1μ11e−NeqCϕt11

μ11e−NeqCϕt11 þ μ12e−NeqCϕt12
: [S26]

The above Eq. S26 is equivalent to Eq. S10, which considers
a gene sequence with only one amino acid and two codons.

S2. Argument Against Model Overparametrization. Although it may
seem that the excellent fit between the observed and predicted
values may be attributable to overfitting the data with a large
numbers of parameters, this is not the case. For instance, in the
case of an amino acid with k codons, there are k − 1 independent
codon frequencies. Because the change in codon frequencies
with gene expression can be thought of as a nonlinear regression,
each codon should have a slope and an intercept. Thus, there are
2(k − 1) independent parameters for an amino acid with k co-
dons. The relative mutation rates provide the estimates for in-
tercepts, whereas differences in elongation times provide the
estimates for their respective slopes. The beauty of our approach
lies in the fact that our simple model, appropriately parame-
terized, leads to a correlation coefficient of 0.96.

1. Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1:177–232.
2. Gavrilets S (2004) Fitness Landscapes and the Origin of Species: Monographs in

Population Biology (Princeton Univ Press, Princeton), Vol 41.

3. Berg J, Willmann S, Lässig M (2004) Adaptive evolution of transcription factor binding
sites. BMC Evol Biol 4:42.

4. Sella G, Hirsh AE (2005) The application of statistical physics to evolutionary biology.
Proc Natl Acad Sci USA 102:9541–9546.
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Fig. S1. Correlation between estimates of Δts and μi/μj using a random subset of 2,337 genes (half of the genome) and using the entire genome. We find a
strong correlation (ρ > 0.99, P < 10−15) for both Δt and μi/μj.
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n1
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��
n2
x21

�
∏2

j¼1μ
x1j
1j ∏

2
j¼1μ

x2j
2j e

−Neðx11qCϕt11þx12qCϕt12þx21qCϕt21þx22qCϕt22Þ

∑n1
y11¼0∑
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y21¼0

�
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y11

��
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y21

�
∏2

j¼1μ
y1j
1j ∏

2
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; [S18]
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Fig. S2. Observed and predicted changes in codon frequencies with gene expression for the second half of the genome using parameters Δt and μi/μj esti-
mated using the first half. A–S correspond to a specific amino acid, where codons ending in A/T are shown in shades of blue and codons ending in G/C are
shown in shades of red. Solid dots and vertical bars represent mean ± 1 SD of observed codon frequencies within genes, with protein production rates defined
by the bin. The expected codon frequencies under our model are represented by solid lines. ρM represents the correlation between the mean of observed
codon frequencies in a bin and predicted codon frequencies at mean ϕ value. ρc represents the correlation between observed codon counts and predicted
codon counts of all genes at their specific ϕ value.
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Fig. S3. Correlation between observed codon counts and predicted codon counts of individual genes in the second half of the genome using parameters Δt
and μi/μj estimated using the first half. We find a very high correlation (ρ = 0.96, P < 10−15) between our model predictions and observed counts. (Inset)
Distribution of correlation coefficients at the level of individual amino acids, indicating that our high correlation is not biased by specific amino acids and that
we have a high correlation across all amino acids. ρc represents the correlation between observed codon counts and predicted codon counts of all genes at their
specific ϕ value.
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Fig. S4. Correlation between estimates of Δts and μi/μj using protein production rate ϕ for each gene and using mRNA abundances. We find a strong cor-
relation (ρ > 0.97, P < 10−15) for both Δt and μi/μj.
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Fig. S5. Observed and predicted changes in codon frequencies with gene expression, specifically mRNA abundances. A–S correspond to a specific amino acid,
where codons ending in A/T are shown in shades of blue and codons ending in G/C are shown in shades of red. Solid dots and vertical bars represent mean ± 1 SD
of observed codon frequencies within genes, with mRNA abundances defined by the bin. The expected codon frequencies under our model are represented by
solid lines. ρM represents the correlation between the mean of observed codon frequencies in a bin and predicted codon frequencies at mean mRNA abundance
of the bin. ρc represents the correlation between observed codon counts and predicted codon counts of all genes at their specific ϕ value.

Shah and Gilchrist www.pnas.org/cgi/content/short/1016719108 5 of 6

www.pnas.org/cgi/content/short/1016719108


Table S1. Estimates of relative mutation rate (μi /μj)

Amino acids Codons μi /μj Amino acids Codons μi/μj

Ala μGCC /μGCA 0.6541 Pro μCCC /μCCA 0.4460
μGCG /μGCA 0.4016 μCCG /μCCA 0.3630
μGCC /μGCA 1.0605 μCCT /μCCA 0.8008

Cys μTGT /μTGC 1.6581 Gln μCAG /μCAA 0.5026
Asp μGAT /μGAC 1.9496 Arg μAGG /μAGA 0.5325
Glu μGAG /μGAA 0.4536 μCGA /μAGA 0.2012
Phe μTTT /μTTC 1.5262 μCGC /μAGA 0.1376
Gly μGGC /μGGA 0.7779 μGGG /μAGA 0.1104

μGGG /μGGA 0.5310 μCGT /μAGA 0.2946
μGGT /μGGA 1.6471 Ser μTCC /μTCA 0.6861

His μCAT /μCAC 1.8943 μTCG /μTCA 0.4736
Ile μATC /μATA 0.7647 μTCT /μTCA 1.1472

μATT /μATA 1.4006 μAGT /μAGC 1.4752
Lys μAAG /μAAA 0.6811 Thr μACC /μACA 0.6185
Leu μCTC /μCTA 0.4319 μACG /μACA 0.4740

μCTG /μCTA 0.8441 μACT /μACA 1.0249
μCTT /μCTA 0.9404 Val μGTC /μGTA 0.7811
μTTA /μCTA 1.9598 μGTG /μGTA 0.8533
μTTG /μCTA 1.9253 μGTT /μGTA 1.5350

Asn μAAT /μAAC 1.5897 Tyr μTAT /μTAC 1.4217

Table S2. Estimates of differences in elongation time (Δt)

Amino acids Codons Δt Amino acids Codons Δt

Ala tGCC−tGCA −0.1108 Pro tCCC−tCCA 0.1394
tGCG−tGCA 0.0551 tCCG−tCCA 0.2514
tGCC−tGCA −0.1168 tCCT−tCCA 0.0396

Cys tTGT−tTGC −0.0289 Gln tCAG−tCAA 0.1024
Asp tGAT−tGAC 0.0125 Arg tAGG−tAGA 0.1813
Glu tGAC−tGAA 0.0585 tCGA−tAGA 0.6795
Phe tTTT−tTTC 0.0419 tCGC−tAGA 0.1586
Gly tGGC−tGGA −0.1452 tCGG−tAGA 0.4932

tGGG−tGGA −0.0593 tCGT−tAGA 0.0039
tGGT−tGGA −0.2126 Ser tTCC−tTCA −0.0887

His tCAT−tCAC 0.0281 tTCG−tTCA 0.0400
Ile tATC−tATA −0.2671 tTCT−tTCA −0.0876

tATT−tATA −0.2588 tAGT−tAGC 0.0054
Lys tAAG−tAAA −0.0443 Thr tACC−tACA −0.0950
Leu tCTC−tCTA 0.1349 tACG−tACA 0.0600

tCTG−tCTA 0.0733 tACT−tACA −0.0902
tCTT−tCTA 0.0674 Val tGTC−tGTA −0.1736
tTTA−tCTA −0.0266 tGTG−tGTA −0.0863
tTTG−tCTA −0.0082 tGTT−tGTA −0.1688

Asn tAAT−tAAC 0.0664 Tyr tTAT−tTAC 0.0683

Estimates of differences in elongation time (Δt) are given in seconds.

Dataset S1. List of S. cerevisiae genes used in the analyses and their protein production rates ϕ

Dataset S1

Dataset S2. Gene-specific observed and predicted codon counts

Dataset S2
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