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Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC
detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanopar-
ticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding pro-
teins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression
and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC
with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts
that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or
cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that
IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of
transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo.
Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings sug-
gest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor
biomarker.

NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colo-
rectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro
or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape
EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.

colorectal adenocarcinoma; exosome; liquid biopsy; RNA binding protein

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer
worldwide, accounting for 10% of all newly diagnosed cancer
cases (1, 2). Despite decreases in CRC diagnoses in older
adults (>50 yr), the incidence of CRC in younger patients
(<50 yr) is rising (3), with reduced access to preventative

care and screening predicted to elevate death rates from
CRC over the next decade (4).

Early diagnosis is critical for proper treatment and long-
term patient survival, which is >90%, if CRC is detected at
an early stage (2). Colonoscopy and histopathological diag-
noses of tissue biopsies are the current clinical gold standard
(5). However, this approach is invasive, expensive, highly
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dependent on the skill of the endoscopist impacting sensitiv-
ity, and a tissue biopsy may not account for tumor heteroge-
neity that impacts treatment choices and prognosis (6, 7).

Tumor biomarker analyses of liquid biopsies (e.g., plasma)
have promise for early cancer detection with broad molecu-
lar phenotyping of tumor heterogeneity (6, 8–10). Tumor
biomarkers may include circulating tumor cells, cell-free
DNA, RNA, or proteins. In addition, extracellular vesicles,
(EVs) released by tumor cells and/or the patient’s host
response are another emerging source of sensitive and spe-
cific biomarkers, in part because they are present in relative
high concentrations within plasma (�1010/mL) (11). In turn,
regulation of EV synthesis, their cargo, secretion, and tumor-
related phenotypes are the subject of intense interest (12–21).
EVs are lipid bilayer-encased nanoparticles released from
cells to carry biological cargo as intercellular signals (13). EVs
carry lipids, proteins, and RNAs that can facilitate tumor
progression and metastasis (14–16). EV phenotypes could
therefore prove to be useful biomarkers for early CRC diag-
nostics (17–21).

The RNA binding protein insulin-like growth factor 2
mRNA binding protein 1 (IGF2BP1/IMP1) is emerging as a
potential regulator of EV biology (22–24). Although IMP1 is
highly expressed in CRC (25, 26) and is associated with
poor prognosis (26, 27), its role in CRC EV biology is
unknown. As an RNA binding protein, IMP1 binds to
mRNA target transcripts and regulates their stability,
localization, and translation (28–32). IMP1 binding is de-
pendent upon target nucleotide sequences (22, 23, 33) and/
or N6-methyladenosine (m6A) marks (29), which is a
dynamic, temporal, and tissue-specific modification that
facilitates interaction with RBPs and subsequent modula-
tion of gene expression and mRNA transcript stability (29,
34–36). IMP1 binds and stabilizes numerous transcripts
with known roles in CRC, including KRAS (37), cMYC (38,
39), CD44 (40), PTGS2 (41), MDR1 (42), ITGB5 (22), as well
as many other mRNAs that could serve as biomarkers of
this cancer (28).

In this study, we used human CRC in vitro and in vivo
models to test whether IMP1 expression levels impact human
CRC cell-dependent EV synthesis, secretion, and/or cargo.

METHODS

Cell Lines

Parental cell lines (Caco2, SW480, andHT-29) were obtained
from the American Type Tissue Culture Collection (ATCC,
Manassas, VA). The ATCC authenticates all human cell lines
through short tandem repeat analysis. All cell lines were con-
firmed to be mycoplasma negative every 3 wk (MycoAlert
Mycoplasma Detection Kit, Lonza, Bend, OR). IMP1 was
knocked out in HT-29 and SW480 cells using CRISPR/Cas9
and FLAG-IMP1 was overexpressed as described by Andres et
al. (43). All cell lines were maintained in DMEM-H (Gibco,
Thermo Fisher, Waltham,MA), 10% FBS (Cytiva, Marlborough,
MA), and 1% penicillin-streptomycin (Gibco). HT-29 and
SW480 cell lines expressing FLAG-IMP1 were maintained with
2 μg/mL puromycin (Goldbio, St. Louis, MO), as described by
Andres et al. (43). All cell counting was performed using the
Countess 3 automated cell counter (Thermo Fisher) and

Trypan blue staining to differentiate between live and dead
cells. Cell viability was assessed in EV secretion experiments.

Colonoid Culture

Colonoid lines were generated from mice expressing
FLAG-tagged Imp1 in an intestinal and colonic-epithelial
specific manner (Imp1OE) based on expression of Villin-Cre
(44). Colonoids were generated from Imp1OE and Imp1 wild-
type (WT) mice as described by Mizutani and Clevers (45)
with the following modifications. Colon tissue was har-
vested, flushed with PBS, longitudinally opened, and cut
into 5-mm tissue pieces. Tissue pieces were then washed
with PBS 15 times before transfer to colonic crypt isolation
buffer (5�: Na2HPO4, 28 mM; KH2PO4, 40 mM; NaCl, 480
mM; KCl, 8 mM; sucrose, 220 mM; D-sorbitol, 274 mM) for 20
min at room temperature to lift crypts (one fraction).
Fractions 3, 4, and 5 were used downstream. Fractions con-
taining crypts were centrifuged at 290 g for 5 min at 4�C.
Pellet was resuspended in 4 mL of cold DMEM/F12 at 200 g
for 3 min at 4�C. Colon crypts were resuspended in 3:2
Matrigel (MG):basal media [basal media: 1% penicillin/strep-
tomycin (Gibco, Waltham, MA), 10 mM HEPES (Thermo
Fisher, Waltham, MA), 1� Glutamax (Fisher Scientific,
Pittsburgh, PA)] for plating. For experimental setup, colo-
noids were dissociated with cell recovery solution (Corning,
Corning, NY), centrifuged at 300 g for 5 min, resuspended in
3:2 Matrigel:basal media.

For each experiment, 200–300 colonoids/well were plated
in Matrigel (MG) patties in 4 wells per colonoid line. MG pat-
ties were polymerized for 15 min at 37�C before 500 μL of
mouse Intesticult (STEMCELL Technologies, Vancouver,
Canada), with 1% penicillin-streptomycin (Gibco) and 0.25
μg/mL amphotericin B (Sigma, St. Louis, MO) was added.
Bright-field images were taken using a Keyence BZ-X800
(Keyence, Itasca, IL) with a �2 objective, 0.1 numerical aper-
ture (NA).

RNA Sequencing

HT-29 null and IMP1OE tumor-derived cell lines (n = 2 pas-
sages/genotype) were grown and RNA-seq libraries were pre-
pared as described previously by Chatterji et al. (44).

RNA Sequencing Analysis

Adapters were removed and raw reads were simultaneously
demultiplexed from a single library using cutadapt (46).
Trimmed reads were aligned using kallisto (47) against a refer-
ence transcriptome based on Gencode release 39, which con-
tained a single, primary transcript isoform for each gene.
Primary isoforms of genes were determined using the APPRIS
database (48). Differential expression was performed using
DESeq2 (49). A gene was considered differentially expressed if
it had both a q value �0.05 and at least a log2-fold change =
0.5. A complete list of genes is shown in GSE198804. Gene on-
tology (GO) analysis (50, 51) was conducted using the online
GO enrichment tool (52). Specifically, IDs for all significant
genes were used to search the GO Cellular Compartment on-
tology using the statistical overrepresentation test and Fisher’s
exact test options. Data processing and analysis was per-
formed using the R programming language (53). Source data
files are deposited in GEO and can be accessed at GSE198804.
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Xenograft Studies for Circulating Extracellular Vesicle
Isolation

All animal studies were performed in accordance with
University of Pennsylvania IACUC (Protocol No. 805829)
guidelines. Female, NCr nude mice aged 8 wk (CrTac:NCr-
Foxn1nu; Taconic, Germantown, NY) were anesthetized with
isoflurane (1.5%–4%) before injection of 1 � 106 cells (HT-29
null or HT-29 IMP1OE) in 100 μL of 50:50 Matrigel and
Dulbecco’s modified Eagle’s medium (DMEM)-high glucose
in the left and right flank. Animals were maintained with ad
libitum access to food and water and on a 12-h light/dark
cycle. Tumor volume was measured weekly using calipers
and tumor mass was measured following tissue harvest.
Animals were euthanized by carbon dioxide asphyxiation
when total tumor volume was approximately 500 mm3 or
ulceration necessitated euthanasia. After euthanasia, whole
blood was collected by cardiac puncture into ETDA-coated
tubes and final tumor volume and mass were recorded. Data
presented are from n = 5 untreated and n = 9 null or IMP1OE

tumor-bearing animals. Animals treated with topical antibi-
otics were excluded from the study.

Nanoscale Flow Cytometry of Human Colorectal Cancer
Extracellular Vesicles

Fresh blood was collected in EDTA tubes from these mice
and centrifuged at 2,500 g for 15 min (Sorvall ST16R, brake
onmedium low) to generate platelet poor plasma, which was
dispensed into 50-μL aliquots, flash frozen, and banked
at�80�C. Importantly, all blood samples were uniformly col-
lected, centrifuged within 2 h, and banked at �80 for batch
testing. Anti-human EpCAM APC-cy7 (Abcore) and CD63-
PEcy7 (BD Biosciences) optimal dilutions (0.2–0.02 μg/mL)
were determined by testing dilution series in positive and
negative control samples (human pancreatic cancer culture
media and mouse plasma from animals lacking human tu-
mor implantation). Negative controls also included mono-
clonal isotypes, antibody-stained 0.1 mm PBS, and EV-
depleted mouse plasma that were treated overnight with 5%
DMSO at room temperature. Plasma samples were stained
for 1 h at room temperature then diluted 1:300 into “200 nm
bead buffer” (Polysciences.com), which was made by
nanoFACS sorting 200 nm polystyrene beads into 0.1-mm fil-
tered PBS. Bead buffer of 200 nm provided both a “relative”
internal size standard and a means to standardize the vol-
ume of stained plasma tested (e.g., 1,000 beads equaled 1 mL
of starting plasma tested on our BD Biosciences FacsAria
Fusion). Nanoscale flow cytometry imaging and counting of
stained EVs was performed as described by our group and
others (54–56). Briefly, the approach used the combination
of both side light scatter (SSC-H) reported on the log scale of
the y-axis and antibody-fluorophore labeling reported on the
x-axis, which distinguished relative EV sizes (compared with
commercially available polystyrene bead standards ranging
in size from 100 nm to 900 nm,Megamix-Plus FSC and -Plus
SSC, BioCytex) and multiplex antibody target specificity
(only EpCAMþ /CD63þ events were counted). Labeled EVs
were distinguished from the unlabeled nanoparticle “noise”
of similar size (e.g., lipoproteins, nonspecific cell fragments)
by positive antibody staining fluorescent signal. Fluidic and
instrument settings were designed to minimize background

noise while maximizing the detection of submicron-sized
EVs. SSC-H voltage was uniformly adjusted for all experi-
ments so 200-nm beads were at 104 and 900-nm beads
remained on the visible log x-scale. All flow machine buf-
fers were filtered with a ZenPure PureFlow Mini Capsule
PES 0.1-mm filter. Imaging was performed on a FacsAria
Fusion (BD Biosciences) with a 70-μm nozzle and 0.1-mm
filtered PBS sheath fluid at a pressure of 70 psi. Settings
were considered adequate if 0.1-mm filtered PBS generated
“noise” at fewer than 1,000 events per second. Coincident
EV events per nanoliter droplet were controlled by using a
threshold rate of <40,000 events per second and elec-
tronic abort rate <5%. An essential criterion for reproduci-
bility was setting uniform gates in advance of batch
analysis with positive and negative control plasma sam-
ples. All samples used the same preset gates defined rela-
tive to MegaMix beads, MESF beads (BD Biosciences), and
plasma controls. Data were collected based on uniform
200 nm bead dilution buffer for each sample and reported
as gated events per microliter of starting plasma. The
mean of triplicate experiments for each sample was used
for statistical analysis of EpCAMþ /CD63þ -positive cola-
beled EV events. Data are presented as the mean and SE
from n = 5 untreated and n = 9 null or IMP1OE tumor-bear-
ing animals and compared using one-way ANOVA or
Student’s t test with P < 0.05 being considered statistically
significant.

Extracellular Vesicle-Depleted FBS

Extracellular vesicles (EVs) were depleted from FBS (Cytiva)
using a 400-mL Amicon Stirred Cell (MilliporeSigma,
Burlington, MA) with Biomax 300-kDa Ultrafiltration
Disks (MilliporeSigma) for 4–6 h. Supernatant was used
for making EV-depleted DMEM in subsequent experiments.
EV depletion was assessed by running the cell culture media
containing filtered FBS on ZetaView Quatt Nanoparticle
Tracking Analyzer (Particle Metrix) (Supplemental Fig. S1; all
Supplemental material is available at https://doi.org/10.6084/
m9.figshare.c.5983702.v1).

Extracellular Vesicle Isolation by Size-Exclusion
Chromatography—Cell Lines

For EV secretion experiments, 1 million HT-29 or SW480
cells with and without IMP1 expression were plated and
allowed to attach to a 10-cm dish overnight. For EV cargo
experiments, 2.5 million cells were plated and allowed to
attach to a 15-cm dish overnight. The next day, the cells were
washed once with warm 0.1-μm filtered PBS (Gibco). Cells
were then incubated overnight in DMEM-H (Gibco) contain-
ing EV-depleted FBS (EVD-FBS; final concentration = 10%);
1% penicillin-streptomycin (Gibco). EV-conditioned media
containing secreted EVs was collected after 48 h. Media was
centrifuged at 386 g for 10 min. Supernatant was concen-
trated down to <200 mL with passivated Amicon Ultra-15
Centrifugal Filter Units (MilliporeSigma) at 5,000 g (time is
dependent on the initial volume). EVs were then isolated
using a qEV single column (IZON Science, Christchurch,
New Zealand) following manufacturer instructions. Briefly,
200 μL fractions were collected into 1.5-mL Protein LoBind
Microcentrifuge Tubes (Eppendorf, Hamburg, Germany).
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The presence of EVs in fractions 7 and 8 were verified by
Western blot analysis for CD9 (Supplemental Fig. S2). Equal
volume of sample was concentrated by boiling and loaded
for fractions 3–11 (due to low protein measurement) and 15
mg of protein was loaded for fractions 12–15. Protein concen-
tration was quantified using Nanodrop 2000c (Thermo
Fisher Scientific).

Extracellular Vesicle Isolation by Size-Exclusion
Chromatography—Colonoids

Forty-eight hours postseeding, colonoid media was
replaced with fresh complete Intesticult (STEMCELL
Technologies). Conditioned media was harvested twice:
first at 48 h and again 72 h later and then centrifuged at
10,000 g for 20 min at 4�C to get rid of debris. Collected
conditioned media was concentrated down to <150 mL
with passivated Amicon Ultra-2 Centrifugal Filter Units
(MilliporeSigma) per instructions. Briefly, conditioned
media was loaded and centrifuged at 3,000 g for 10-min
intervals at 15�C. EVs were then extracted using qEV single
columns (IZON Science) as with human CRC cell media.
EV-enriched fractions were then collected (�400 mL) and
concentrated down to <50 mL with a SpeedVac (Thermo,
DNA-120). Protein concentration was quantified using
microBCA kit (Pierce, Thermo Scientific).

Nanoparticle Tracking Analysis

Nanoparticle tracking analysis was performed using
Zetaview Quatt (Particle Metrix, Inning am Ammersee,
Germany) to quantify particles using di8 lipid membrane
dye (Thermo Fisher). Di8, at a concentration of 1:1,000,
was incubated with the EV samples for 15 min in the dark.
For all samples data were acquired and averaged over 11
image positions at a temperature of 25�C. For samples iso-
lated from cell lines and stained with Di8, data were col-
lected at an intensity of 80, gain = 38.4. All samples were
diluted in 0.1-mm filtered PBS, which contained minimal
particles and fell below the level of detection on the
ZetaView. Each sample was run in triplicate and values
shown are the average of triplicate runs performed on n = 3
independent passages of each cell line. Each run included
the saline used for sample dilution and fresh media con-
taining all treatments or additives to confirm low levels of
background particles.

Protein Isolation, Quantification, andWestern Blotting

Cells were lysed in RIPA lysis buffer [20 mM Tris·HCl
(Fisher Scientific); 100 mM KCl (Thermo Fisher); 5 mM
MgCl2 (Fisher Scientific); 1 mM DTT (Fisher Scientific); 0.5%
TritonX-100 (Fisher Scientific) with fresh phosphatase inhib-
itor cocktail] or 1� radioimmunoprecipitation assay (RIPA)-
SDS [Cell Signaling Technology (CST), Danvers, MA]with pro-
tease and phosphatase inhibitors (Thermo Fisher). Protein
concentration was determined by bicinchoninic acid (BCA)
assay (Thermo Fisher) following manufacturer instructions.
For whole cell lysates, equal protein concentrations were run
on 4%–12% bis-tris gels (Thermo Fisher) and transferred to
0.45-μm nitrocellulose or PVDF membrane. EVs were lysed
in 6� SDS/laemmli, concentrated by evaporation (cell lines)
and/or loaded in equal microgram amounts as indicated,

run on a 4%–12% bis-tris gel (Thermo Fisher), and trans-
ferred to PVDF membrane (Immobilon, Millipore/Merck).
The membrane was blocked in LI-COR blocking buffer (LI-
COR, Lincoln, NE) or 5% BSA (Goldbio) in PBS (Fisher
Scientific). Primary antibodies were as follows: anti-Alix
(Santa Cruz, sc-53540, 1:5,000); anti-CD63 (System Bio-
sciences, Palo Alto, CA, EXOAB-CD63A-1, 1:1,000) or for
whole cell lysate (WCL; Abcam, ab134045, 1:1,000); anti-
CD9 (System Biosciences, EXOAB-CD9A-1, 1:1,000); anti-
GM130 (Novus Biologicals, Littleton, CO, NBP2-53420,
1:1,000); anti-TSG101 (BD Biosciences 612696; 1:1,000); anti-
GAPDHMab374 [Chemicon (Fisher Scientific); 1:10,000]; anti-
FLAG M2 (Sigma/Millipore/Merck, F1804; 1:5,000); anti-IMP1
(MBL International, Woburn, MA, RN007P; 1:1,000); anti-
IMP1 (Cell Signaling Technology, Danvers, MA, CST2852,
1:1,000); Rab27A (00045, 1:500). Secondary antibodies were:
anti-mouse-HRP and anti-rabbit HRP (CST; 1:10,000),
anti-mouse 680/800, anti-rabbit 680/800 (LICOR, 1:15,000)
depending on the imaging platform. PVDF membranes with
fluorescent secondary antibodies were imaged on LICOR
Odyssey. Nitrocellulose membranes with HRP-conjugated
secondary antibodies were overlaid with ECL ultra (Pierce,
Thermo Fisher). The specificity of the MBL anti-IMP1 anti-
body was confirmed by a competitive protein binding assay
using recombinant IMP1 protein (RayBioTech, Peachtree
Corners, GA). Densitometry analysis was performed using
the area under the curve function with ImageJ v.2.1.0 or the
image analysis function on LI-COR Image Studio Lite v.5.2.5.

Immunofluorescence

HT-29 cells were seeded on coverslips at a low density
and allowed to attach overnight. The next day cells were
fixed in 4% paraformaldehyde (PFA, Fisher Scientific) for
20 min. Fixed cells were washed three times with 1� PBS.
Cells were permeabilized in 0.1% Triton-X 100 (Fisher
Scientific) in PBS for 10 min, followed by three washes
with PBS. Permeabilized cells were then blocked with 5%
BSA (Sigma) in PBS for 30 min. Primary antibody to CD63
was diluted in blocking solution as follows: anti-CD63
(mouse; Abcam, Cambridge, UK; ab8219; 1:200) and incu-
bated overnight at 4�C. The next morning, coverslips were
washed three times with 1� PBS before 1-h incubation with
secondary antibody. Secondary antibody was diluted 1:500
in blocking buffer anti-mouse-488 (Invitrogen). After sec-
ondary, nuclei were stained with DAPI (1:10,000 in PBS)
for 5 min. Coverslips were washed three times with PBS
and mounted on slides using VectaShield mounting media
(Vector Labs, Burlingame, CA). Unless indicated, all steps
were carried out at room temperature. Images of CD63
were taken using a Nikon confocal microscope with a �100
oil immersion objective, 1.45 NA with an Andor iXon3
EMCCD camera (Oxford Instruments, Abingdon, UK) using
NIS-Elements AR software (Nikon, Tokyo, Japan).

Transmission Electron Microscopy on Cell Pellets

Transmission electronmicroscopy (TEM) was performed on
fixed cell pellets from null and IMP1OE HT-29 cells using con-
ventional methods. TEM micrographs were collected using
Tecnai T12 TEM microscope operating at 100 keV and the
images were recorded at�20mag on Gatan 4K CMOS camera.
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Immuno-Electron Microscopy

Fixed extracellular vesicles isolated from SW480 null and
IMP1OE cell-conditioned media were placed on formvar-
coated 200 mesh copper grids for 5 min. Residual aldehydes
were quenched in 0.15% glycine in 1� PBS. The extracellular
vesicles were then permeabilized with 0.01% Triton X-100 in
1� PBS for 5 min, rinsed in 1� PBS, and then blocked with 1%
BSA and 0.1% fish skin gelatin in 1� PBS for 15 min. The
extracellular vesicles were immunolabeled with mouse anti-
FLAG primary antibody (F1804, Sigma Aldrich) diluted 1:20
in blocking buffer for 1 h, rinsed in 1� PBS, labeled with goat
anti-mouse 15 nm gold secondary antibody (Cat. No. 25133,
ElectronMicroscopy Sciences) diluted 1:20 in blocking buffer
for 30 min and rinsed in 1� PBS. The small EVs were then
fixed with 1% glutaraldehyde in 1� PBS for 5 min, rinsed in
water, and stained with 2% uranyl acetate for 5 min. All incu-
bation steps were performed at room temperature. Samples
were imaged at 120 kV on a FEI Tecnai Spirit TEM system.
Images were acquired using the AMT interface on an AMT 12
Megapixel NanoSprint12S-B cMOS camera system.

RNA Isolation and qRT-PCR from EVs

RNA was extracted from 200 mL of size-exclusion chro-
matography (SEC)-isolated EV suspension from cell cul-
ture conditioned media by using the MagMAX mirVana
Total RNA Isolation Kit (Thermo Fisher). The manufac-
turer protocol for isolating RNA from urine samples was
used. Total Lysis Binding Mix was modified to account for
reduced sample input: for 200 mL of sample, 158.4 mL lysis
buffer and 1.6 mL 2-mercaptoethanol. SuperScript IV VILO
Master Mix (Invitrogen, Waltham, MA) was used for cDNA
synthesis, following manufacturer instructions. Applied
Biosystems TaqMan Fast Advanced Master Mix (Thermo
Fisher) was used for RT-qPCR on StepOnePlus Real-Time
PCR System Applied Biosystems (Thermo Fisher). Taqman
with Gene Expression Assays KRAS (Hs00364282_m),
MYC (Hs00153408_m1), ITGB5 (Hs00174439_m1), MDR1
(Hs00184500_m1 ABCB1), and PTGS2 (Hs00153133_m1)
were used. n = 3 independent samples were run in dupli-
cate for each group. Data were analyzed using the ddCT
method and normalized to the housekeeping gene OAZ1
(Hs00427923_m1).

Statistical Analyses

All values are presented as the means ± SE. The signifi-
cance was determined with an unpaired t test or one-way
ANOVA with multiple comparisons and Tukey’s test calcu-
lated using GraphPad Prism 9.0, depending on the data set
analyzed as indicated in the figure legend. A P value <0.05
was considered significant.

RESULTS

We utilized two CRC cell lines, HT-29 and SW480 in which
endogenous IMP1 was deleted by CRISPR and then FLAG-IMP1
with a short 3 0 untranslated region was re-expressed to
ensure minimal miRNA regulation and high levels of IMP1
expression (Fig. 1A) (43). To evaluate IMP1-mediated mo-
lecular changes in RNA expression in CRC cells, we per-
formed RNA sequencing in HT-29 null and IMP1OE cells.

HT-29 cells were selected since they do not express endog-
enous IMP1 and are capable of differentiation (43, 57).

IMP1 Alters Gene Expression in Exosome and
Extracellular Vesicle Pathways

Differentially expressed transcripts that were signifi-
cantly changed relative to IMP1 expression were compared
using GO analysis (Tables 1 and 2). The extracellular exo-
some and extracellular vesicle pathways were among the
top four most significantly differentially regulated path-
ways in the IMP1-expressing cells and the vesicle pathway
was in the top seven (Table 1). Pathways involved in pro-
tein synthesis regulation, including ribosomal subunits,
were among the most changed pathways (Table 2). Over
30% of significantly altered transcripts were associated
with exosome biogenesis, regulation, or cargo (Fig. 1B). We
assessed expected changes in gene expression and found
IGF2 highly upregulated and GDF15 to be downregulated in
IMP1-expressing cells (Fig. 1C; Supplemental Table S1) (58, 59).
IMP1 induced a modest upregulation in genes with the poten-
tial to influence EV biogenesis, cargo loading, or previously
found within EVs (60–66), including AQP5, TUBB, YWHAQ,
HSPA8, SERPINA1, or MSN (Fig. 1C; Supplemental Table S2)
(all genes selected based on q � 0.05 and log2-fold change �
0.5). These data indicate potential roles for IMP1 in modulat-
ing EV production or cargo. MSN was recently identified as a
novel EV marker in a study of over 400 human samples from
a variety of tissue and biofluid sources (61). Notably, in a small
study of n = 36 patients, SERPINA1 was upregulated in the cir-
culating EVs isolated from patients with CRC compared with
healthy controls (63).

IMP1 Does Not Alter EV Secretion In Vitro

Our pathway analyses suggest roles for IMP1 in modulat-
ing EV pathways, therefore, we examined if IMP1 expression
could affect EV secretion in CRC cells. We used IMP1 null
and IMP1OE HT-29 and SW480 CRC cell lines (Fig. 2A) and
examined expression of proteins known to be involved in EV
biogenesis and/or secretion, including accessory protein
ALIX, tetraspanin CD63, which are commonly secreted
within EVs (67), and Rab27A, which is important for EV
secretion (68). Interestingly, we found no significant differ-
ences in the amount of protein expression with respect to
IMP1 across n = 3 passages of each cell line (Fig. 2A;
Supplemental Fig. S3A). To further characterize the effects of
IMP1 on vesicle formation, we assessedmultivesicular bodies
(MVB) marked by CD63 by immunofluorescence and intralu-
minal vesicles using transmission electron microscopy. We
found that IMP1OE and null cells contain numerous, CD63-
positive MVB (Fig. 2B) that were often packed with vesicles
(Fig. 2C).

Although we did not observe major differences in the
expression levels of select EV biogenesis or secretion pro-
teins, we next assessed whether IMP1 expression had a
functional impact on the number of EVs that were secreted
from CRC cells. We used size-exclusion chromatography
(SEC) to isolate EVs from the conditioned media of HT-29
and SW480 null and IMP1OE cells. We used Nanoparticle
Tracking Analysis (NTA) coupled with a lipid membrane
dye (Di8) to quantify the size and number of the isolated
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vesicles. Consistent with our molecular data, we found
that IMP1 expression did not alter EV secretion from HT-
29 or SW480 CRC cell lines (Fig. 2D). Importantly, there were
no significant differences in total cell number (Fig. 2E) or vi-
ability (Fig. 2F) at the time of media harvest. We confirmed
EV identity following the MISEV 2018 guidelines (13) and

demonstrated that the isolated EVs contain CD63, TSG101,
CD9 and were negative for the Golgi protein GM130 (Fig. 2G;
Supplemental Fig. S3B). Together this body of evidence indi-
cates that IMP1 does not alter in vitro EV secretion.

IMP1 Does Not Alter In Vivo EV Secretion

Cancer cells continually communicate with and are
shaped by their surrounding microenvironment. EVs are
one critical mediator of this information flow (69). To evalu-
ate whether IMP1 expression alters EV secretion in vivo in
the presence of mesenchymal cell types, we performed sub-
cutaneous xenografts using HT-29 IMP1 null and IMP1OE

cells. Platelet poor plasma was collected when total tumor
volume reached�500mm3 or ulceration necessitated eutha-
nasia. We then performed nanoscale flow cytometry (con-
trols and validation shown in Supplemental Fig. S4) to assess
the size and number of human CD63/EpCAMþ EVs secreted
from the HT-29 tumors into the mouse circulation (Fig. 3A).
We found that circulating CD63þ /EpCAMþ EVs were
increased in some tumor-bearing mice, but there was no cor-
relation with IMP1 expression levels (Fig. 3B). Notably, the
mean tumor volume was not significantly different between
groups (353 mm3 and 382 mm3 in null versus IMP1OE tumor-
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Figure 1. IMP1 is associated with transcript level changes in exosome and extracellular vesicle pathways. A: Western blot analysis for FLAG protein con-
firms CRISPR deletion of endogenous IMP1 in null/empty vector control cell lines and overexpression of FLAG-tagged IMP1 via Piggybac vector in IMP1-
overexpressing lines (IMP1OE). Blot represents n = 5 independent passages. Relative FLAG-IMP1 protein expression was normalized to loading control
GAPDH and quantified using densitometry, shown in the bar graph. Densitometry was performed using the area under the curve function with ImageJ
v.2.1.0 or the image analysis function on LI-COR Image Studio Lite v.5.2.5. P < 0.05 versus null control by unpaired t test. Total RNA was isolated from
null and IMP1-overexpressing HT-29 cell lines, n = 2 independent cell lines per genotype for RNA sequencing. There was a highly significant and strong
correlation between the null control and IMP1OE replicates (see Supplemental Fig. S5A). IMP1 expression resulted in modest up- and downregulation of
gene expression (see Supplemental Fig. S5B). B: over 30% of all differentially expressed genes were associated with extracellular vesicle pathways. C:
individual genes are shown in the volcano plot, created in R where all genes are shown by their log2-fold change and false discovery rate-adjusted P
value. Genes that are members of the GO exosome pathway are shown in blue. The two positive controls, IGF2 and GDF15, are shown in gold. Circular
points indicate true adjusted P value while X points are artificially lowered to aid in visualization. X points are more significant than indicated. The full
results are available in Supplemental Table S3.

Table 1. Most significantly differentially regulated
pathways

Term Fold Enrichment P Value FDR

Extracellular membrane-
bounded organelle

3.05 9.89e-26 6.68e-23

Extracellular exosome 3.05 1.66e-25 8.39e-23
Extracellular organelle 3.05 9.89e-26 1.00e-22
Extracellular vesicle 3.05 9.54e-26 1.93e-22
Extracellular space 2.26 1.02e-19 4.12e-17
Extracellular region 2.02 9.22e-19 3.12e-16
Vesicle 2.05 4.21e-17 1.22e-14
Cytoplasm 1.36 2.28e-15 5.77e-13
Intracellular anatomical
structure

1.21 2.70e-11 6.09e-09

Cytosol 1.63 8.45e-11 1.71e-08

FDR, false discovery rate.
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injected animals, respectively) (Fig. 3C). These data suggest
that IMP1 does not alter human CRC EV secretion in vivo.

IMP1 Enters EVs In Vitro

Given known and emerging roles for RNA binding proteins
in regulating EV cargo (23), we next asked whether IMP1
directly or indirectly alters EV cargo using a panel of CRC cell
lines (Fig. 4A). We included Caco2 cells, which express high
levels of endogenous IMP1, 78-fold more than our HT-29
IMP1OE cells; wild-type (WT) SW480 cells that express moder-
ate-high levels of endogenous IMP1, 31-fold more than HT-29
IMP1OE cells; as well as HT-29 and SW480 IMP1null and IMP1OE

cells. These additional wild-type cell lines were included to
control for any potential artifacts of the FLAG-IMP1 protein.

EVs were isolated from an equal volume of culture media
derived from plating of equal numbers of cells across all lines
by SEC. EV identity was confirmed by Western blot analysis
using CD9 (Fig. 4B). We found that IMP1 enters the EV in
WT and IMP1OE SW480 cells, as well as Caco2 cells but not in
HT-29 IMP1OE cells (Fig. 4B). We further confirmed the pres-
ence of FLAG-IMP1 in EVs isolated from SW480 IMP1OE cells
by Western blot (Fig. 4C) and immunoelectron microscopy
for FLAG protein (Fig. 4D). The specificity of CD9 to SEC
fractions 7–8 is illustrated in the full blot from this experi-
ment in Supplemental Fig. S2.

To examine if IMP1 directly alters EV RNA cargo, we per-
formed targeted qPCR to examine expression levels of known
IMP1 binding targets. We isolated RNA from EVs secreted by
IMP1 null versus IMP1OE SW480 cells and assessed the expres-
sion of KRAS (37), MYC (38, 39), ITGB5 (22), PTGS2 (41), and
MDR1 (42) by qPCR (Fig. 4E). We found packaging of KRAS,
MYC, ITGB5, andMDR1 transcripts into CRC cell EVs, whereas
PTGS2was generally absent.We did not detect a significant dif-
ference in the amount of these transcripts with respect to IMP1.
This could be due to redundancy of RNA binding proteins that
traffic into CRC EVs, such as Ago2 (52, 71) or indicative of IMP1
not transporting these particular transcripts in this context. In
summary, these data indicate the IMP1 enters the EV in select
CRC cell lines, but that it does not alter levels of well-recog-
nized IMP1 targets including, KRAS, MYC, ITGB5, or MDR1
transcripts.

IMP1 Does Not Enhance Vesicle Secretion from
Nontransformed Colonoids

Since IMP1 is highly expressed during and critical to gut
development (72), we next asked if high levels of IMP1 would
affect EV secretion or cargo in the nontransformed colonic

epithelium. To address this, we utilized mouse colonoid cul-
tures derived from the colon of mice expressing Imp1 in an
intestinal and colonic epithelial specific manner (Imp1OE)
based on expression of Villin-Cre (44) (Fig. 5A).

We isolated EVs secreted by colonoids from Imp1OE and
Imp1 wild-type (WT) mice (Fig. 5B). We confirmed EV iden-
tity by Western blot analysis for CD9, a protein considered to
mark EVs, based on MISEV 2018 guidelines (13) (Fig. 5C).
Interestingly, despite elevated levels of Imp1 expression, we
did not detect Imp1 in EVs secreted from nontransformed
colonoids (Fig. 5C), suggesting that IMP1 entry into the EV
maybe specific to CRC cells. However, this does not elimi-
nate the possibility that Imp1 indirectly alters EV cargo by
changing RNA or protein expression within the colonoids
themselves.

Taken together, these data suggest that although IMP1
influences the RNA expression of transcripts from extracel-
lular vesicle pathways, IMP1 expression in CRC cell lines
does not have observable effects on EV secretion in vitro or
in vivo. IMP1 does however influence EV cargo in CRC by
entering EVs from CRC cell lines with high IMP1 expression
(Fig. 6). This suggests that IMP1 could be a useful biomarker
for indicating primary tumor IMP1 status, if circulating IMP1
can be detected in human patients.

DISCUSSION

Increased IMP1 expression is observed in 70% of CRC
tumors; and, overexpression of IMP1 is associated with
increased tumor stage and poor prognosis (26, 27). IMP1 is
known to influence numerous signaling pathways, including
KRAS (37, 73), cMYC (38, 39, 74, 75), and WNT (39, 40, 44,
74–77) that could affect EV secretion (78–80) and/or cargo
loading (71, 81–84), but the relationship between IMP1 and
CRC EV biology remained to be explored.

In this study, we demonstrate that IMP1 enters CRC EVs in
SW480 and Caco2 human cell lines where it may directly al-
ter EV RNA cargo. Despite significant potential to alter EV
production or secretion, we observed no changes in the
number of EVs secreted from CRC cells in vitro or in vivo
related to IMP1 expression levels.

RNA sequencing data suggested that increasing IMP1 lev-
els alters transcripts known to regulate EV pathways, but we
did not observe differences in CRC EV secretion. Perhaps
this is due to changes that both up- and downregulate EV
regulation pathways, resulting in a net neutral change.
Alternatively, changes in expression could be related to the

Table 2. Most changed pathways

Term Fold Enrichment P Value FDR

MHC class I protein complex 27.15 4.21e-05 0.00328
Microvillus membrane 14.1 1.06e-05 0.0012
Mitochondrial respiratory chain complex IV 10.63 8.65e-04 0.0337
MHC protein complex 9.4 0.0013 0.0439
Respiratory chain complex IV 9.4 0.0013 0.0432
Cytosolic small ribosomal subunit 8.33 1.46e-04 0.0074
Cytosolic ribosome 7.71 4.83e-08 7.53e-06
Cytosolic large ribosomal subunit 7.37 8.25e-05 0.00492
Microvillus 6.11 3.18e-05 0.00258
Lysosomal lumen 5.67 5.46e-05 0.00395

FDR, false discovery rate; MHC, major histocompatibility complex.
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effects of IMP1 on the autophagy pathway (85), which is
interconnected with EV pathway regulation (86–95). It is
also possible that IMP1 alters secretion or production of
larger microvesicles. This study focused exclusively on

smaller EVs and excluded microvesicles larger than 1 mm
from our preps via centrifugation. In turn, future studies
might focus on larger microvesicles or oncosomes to see if
IMP1 modulates their secretion. It is unlikely that differences
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in EV secretion may be masked by the elevated level of EV
production by CRC cells, since high levels of IMP1 also do
not alter EV secretion in our nontransformed colonoids. Our
current working hypothesis is now that IMP1 function in
CRC EV biologymay be focused on EV cargo.

We observed that IMP1 enters EVs from SW480 and Caco2
cells lines but not in HT-29 cell lines or colonoids overex-
pressing IMP1. This difference is intriguing and likely points
to molecular differences within the CRC cell lines them-
selves. For example, HT-29 cells express very little endoge-
nous IMP1 (37), so perhaps the signaling paradigm or cellular
mediator(s) of IMP1 EV entry are also absent within HT-29
cells. Alternatively, we speculate that reduced levels of m6A
methylation may influence whether or not IMP1 enters EVs
of specific cell lines as lower levels of m6A could indicate
reduced IMP1-mRNA interactions. HT-29 cells express lower
levels of m6A methyl transferase METTL3 than SW480 cells
(96, 97), suggesting that these cells could have reduced m6A
marks. However, Caco2 cells exhibit METTL3 levels similar
to those of HT-29 cells (97), suggesting that if m6A marks do
influence IMP1 entry in to the EV, this is not the only deter-
minant. If IMP1 is responsible for the transport of key EV
cargo in SW480 and Caco2 cell lines, this yet to be defined
cargomay be absent fromHT-29 cells.

We did observe select IMP1 target mRNAs within EVs iso-
lated from SW480 cells with and without IMP1 expression.
KRAS, MYC, ITGB5, and MDRI were present within the CRC
EVs, whereas PTGS2 was not. This confirms the selectivity
with which EV cargo are loaded (15, 82), but also indicates
that if IMP1 is involved in carrying these target mRNAs, it is
not the only mediator of their EV entry. Other RBPs could
also be mediating cargo entry, for example, AGO2 and HuR
both enter CRC cell EVs (52, 71) and bind KRAS mRNA (33,
98–100), indicating another route for EV KRAS loading.
Notably, the levels of IMP1 within the SW480 IMP1OE EVs
were modest, so differences driven by IMP1 may be difficult

to detect in this system. For future studies, a system with
more robust IMP1 levels within the EV may more clearly
define whether or not IMP1 regulates entry of these or other
mRNA cargos.

IMP1 could influence EV cargo beyond mRNA. IMP1 mod-
ulatesmiRNA expression (31, 101, 102) and binds to long non-
coding RNAs (103), which could also be transported into EVs
(104). It will be important to examine the impacts of IMP1 on
all RNA populations when profiling EV cargo in the future.

Our RNA sequencing data indicate that IMP1 expression is
associated with increased expression ofMSN and SERPINA1.
These proteins have recently been found within EVs isolated
from patients with cancer (61, 63). Whether IMP1 directly
influences the expression or presence of MSN, SERPINA1,
or other protein cargo within EVs is worthy of future
investigation.

IMP1 could potentially also play a role in EV tropism. It is
reasonable to speculate the EV surface antigen phenotypes
may also be affected by IMP1 regulation, which could influ-
ence targeting of CRC EVs to specific destinations and/or
functions. Proteins present on the EV surface likely govern
cell-EV interactions (105, 106). For example, pancreatic can-
cer EVs with distinct surface integrins seemed to influence
organ-specific metastasis to the liver versus the lung (14).
IMP1 binds and regulates integrin gene expression, including
ITGB5 (22), therefore it could regulate the expression or pre-
sentation of EV-integrins in CRC and direct EV targeting.
This could explain why IMP1 expression in primary CRC
tumors is associated with nodal metastases (27). The impact
of elevated IMP1 levels on CRC EV tropism should be further
explored in vivo.

The transfer of functional RBPs via EVs can alter cellular
gene expression when the cargo avoids lysosomal degrada-
tion (107). Whether IMP1 can be functionally transferred via
EVs remains an open question. Future studies should exam-
ine if IMP1 is transferred to recipient cells via EVs, if the EV
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cargo is targeted to the lysosome as previously described for
other EVs (108, 109), and if not, how IMP1 delivery alters
mRNA stability or expression within the recipient cell.

Interestingly, Ghoshal et al. (24) recently demonstrated
that IMP1 expression promotes metastasis in malignant mel-
anoma using differences in EV cargo. Together with our
study, this underscores the potential importance of profiling
EV cargo secreted from primary tumors with high IMP1

expression. This avenue may lead to early cancer diagnosis
and treatment. For example, IMP1’s binding to specific target
transcripts (MYC, KRAS) can be targeted pharmacologically
(110, 111).

In summary, we have shown that IMP1 alters the expres-
sion of EV pathway related to RNA transcripts, but does not
appear to affect EV secretion levels in vitro or in vivo.
Instead, its role in CRC EV biology may be related to IMP1
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incorporation into EVs impacting transcript cargo. Whether
these changes are involved in CRC EV targeting or their
impact on targeted cells remains to be determined.

SUPPLEMENTAL DATA

Supplemental Figs. S1–S5 and Tables S1–S3: https://doi.org/
10.6084/m9.figshare.c.5983702.v1.
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