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The quality of phylogenetic inference made from protein-coding genes depends, in part, on the realism
with which the codon substitution process is modeled. Here we propose a new mechanistic model that
combines the standard M0 substitution model of Yang (1997) with a simplified model from Gilchrist
(2007) that includes selection on synonymous substitutions as a function of codon-specific nonsense
error rates. We tested the newly proposed model by applying it to 104 protein-coding genes in brewer’s
yeast, and compared the fit of the new model to the standard M0 model and to the mutation–selection
model of Yang and Nielsen (2008) using the AIC. Our new model provided significantly better fit in
approximately 85% of the cases considered for the basic M0 model and in approximately 25% of the cases
for the M0 model with estimated codon frequencies, but only in a few cases when the mutation–selection
model was considered. However, our model includes a parameter that can be interpreted as a measure of
the rate of protein production, and the estimates of this parameter were highly correlated with an
independent measure of protein production for the yeast genes considered here. Finally, we found that
in some cases the new model led to the preference of a different phylogeny for a subset of the genes
considered, indicating that substitution model choice may have an impact on the estimated phylogeny.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction widely used for modeling the amino acid substitution processes
Successful phylogenetic inferencebasedonprotein-codinggenes
relies on use of an appropriatemodel of sequence evolution.Models
in current use are of one of two classes:models that use information
in the nucleotides only, without taking into account information
about codons or amino acids (e.g., the GTR model (Tavare, 1986;
Yang, 1994; Zharkikh, 1994) and its submodels), and codon-based
models that are designed to incorporate information about rates of
change between pairs of amino acids (e.g., Yang et al. (1998);
Kosiol et al. (2007)). Codon-based models can be further classified
into empirical and mechanistic models (Kosiol et al., 2007). Empiri-
calmodelsuse theobserved frequencies of changes in state observed
within large data sets to specify the rate of changeused in themodel.
These estimated rates are assumed to be applicable to a broad set of
sequence data sets, and thus parameters are not generally estimated
separately for a particular data set. Empirical models have been
(Dayhoff et al., 1968, 1972, 1978; Jones et al., 1992, 1994; Whelan
and Goldman, 2001; Goldman et al., 1996, 1998; Adachi and
Hasegawa, 1996; Adachi et al., 2000; Dimmic et al., 2002; Yang,
1994).

Mechanisticmodels, on the other hand, specify an explicitmodel
for the evolutionary process using features such as selective pres-
sures acting on certain types of changes and the varying frequencies
of codons in the data. Nearly all codon models in common use are
mechanistic (but see Kosiol et al. (2007) and references therein).
In general, codon substitution models are based on Markov models
of the rates of nucleotide substitution and typically include a
parameter to quantify differences in the rates of synonymous versus
nonsynonymous substitutions. The magnitude of this parameter,
�1 or �1, is often taken as evidence for protein-level stabilizing
or diversifying selection, respectively (Goldman and Yang, 1994;
Yang and Nielsen, 1998; Yang and Bielawski, 2000; Yang et al.,
2000). Extensions of this approach have been proposed to test for
selection at specific sites in the sequence, in specific lineages of
the phylogeny, or both (Yang et al., 2000; Wong et al., 2004;
Massingham and Goldman, 2005; Yang and Nielsen, 1998, 2002).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ympev.2015.08.026&domain=pdf
http://dx.doi.org/10.1016/j.ympev.2015.08.026
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http://dx.doi.org/10.1016/j.ympev.2015.08.026
http://www.sciencedirect.com/science/journal/10557903
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Within the last ten years, these basicmodels have been extended
in several important directions to attempt to capture the complexi-
ties in thecodonsubstitutionprocess in thepresenceof selection. For
example, Kosakovsky Pond and Muse (2005) allowed the rates of
synonymous and nonsynonymous substitutions to vary across posi-
tion in the sequence, whileMayrose et al. (2007) constructed a fam-
ily of models to allow both variation in synonymous and
nonsynonymous rates across sites and site-to-site dependence in
rates via a first-order Markov process. Nielsen et al. (2007) and
Zhou et al. (2010) used the idea of ‘‘preferred” and ‘‘non-preferred”
synonymous substitutions, where a synonymous substitution is
either preferred or non-preferred at a site depending on selective
forces specific to that location. A primary emphasis in both of these
studies is the development of ways to measure selection along the
genome and across branches of a phylogeny. Several recent models
have also separated the substitution rate into components due to
Qij ¼

0; if 2 or 3 of the pairs ði1; j1Þ; ði2; j2Þ; ði3; j3Þ are different
ljpj; if exactly 1 of the pairs ði1; j1Þ; ði2; j2Þ; ði3; j3Þ is different; and that difference is a synonymous transition
ljxpj; if exactly 1 of the pairs ði1; j1Þ; ði2; j2Þ; ði3; j3Þ is different; and that difference is a nonsynonymous transition
lpj; if exactly 1 of the pairs ði1; j1Þ; ði2; j2Þ; ði3; j3Þ is different; and that difference is a synonymous transversion
lxpj; if exactly 1 of the pairs ði1; j1Þ; ði2; j2Þ; ði3; j3Þ is different; and that difference is a nonsynonymous transversion

8>>>>>><>>>>>>:

the mutational process and the selection process. For example,
Yang and Nielsen (2008) introduced the FMutSel model, in which
each codon is assigned a fitness parameter; differences in the fitness
parameters between two codons are used to specify the substitution
rates in the Markov matrix, by modifying the rates specified by the
standard mutation models. Similarly, Rodrigue et al. (2010) devel-
oped amodel inwhich amino acid propensity scores are used to esti-
mate scaled selection coefficients that are then used to specify
substitution rates.

In this paper, we propose a new mechanistic codon-based sub-
stitution model that takes into account selection on codon usage of
a gene. Our model is based on the M0 model in PAML (Yang, 1997)
but where the substitution rate between codons, including synony-
mous changes, is modified by the substitution’s effects on protein
production costs and the average protein production rate of the
gene. We calculate effects of a codon substitution on the produc-
tion cost of a protein using a model of protein translation based
on the movement of the ribosome along the mRNA of a gene
(Gilchrist and Wagner, 2006; Gilchrist, 2007). The production cost
includes the effects of nonsense (a.k.a. processivity) errors which
result in premature termination of the translation of a protein.
More specifically, changes in protein production costs are due to
presumed inter-codon variation in nonsense error rates.

We fit our model to empirical data for 104 genes from 8 yeast
species, and compare the fit our model to several of the codon
models in common use, such as the M0 model in PAML and the
FMutSel model of Yang and Nielsen (2008). We also examine the
effect of the substitution model on phylogenetic inference by
considering which of two competing phylogenies for these 8 yeast
species is preferred by various models.
2. New approaches

2.1. Background: codon substitution models

To motivate development of our method, we review the codon
substitution models in common use. Specifically, we give the
details of the M0 model implemented in the program PAML. This
model uses a continuous-time Markov model for the substitution
process between codons in a protein-coding gene. The states in
the Markov process are the 61 sense codons (stop codons are not
included). The model is then specified by a 61� 61 matrix Q ,
whose entries Qij give the instantaneous rate of substitution of
codon i with codon j and satisfy the constraint Qii ¼ �Pj–iQ ij.
The probabilities of substitution of codon i with codon j over time
t can then be found by solving the matrix differential equation
P0ðtÞ ¼ QPðtÞ with initial condition Pð0Þ ¼ I, which yields
PðtÞ ¼ expfQ tg. Thus specification of Q and the stationary frequen-
cies of the codons is sufficient to compute the substitution proba-
bilities that will be used in modeling the codon mutation process.

Define codon i to be i1i2i3 and codon j to be j1j2j3, where
ik; jk 2 fA;C;G; Tg for k ¼ 1;2;3. The M0 model specifies Q as
follows:
In the above expression, the parameter j allows for a different rate
of substitution for transitions versus transversions. The x parame-
ter is used to specify a different rate for synonymous and nonsyn-
onymous substitutions. These parameters are typically estimated
from the data, and are often used to provide insight into the mode
of evolution of a particular gene. For example, an x > 1 indicates
positive selection, while an x < 1 indicates negative selection.
When x is not significantly different than 1, there is no evidence
that the gene is under selection. The pj parameters give the fre-
quency of each of the 61 possible codons at equilibrium. There
are several options for setting these parameters: they may all be
set to be equal (the ‘Fequal’ model in PAML), they may be esti-
mated as pi ¼ p0

i1
p0

i2
p0

i3
, where p0

l refers to the empirical frequency
of nucleotide l for that gene (the ‘F1 � 4’ model in PAML), they may
be estimated as pi; ¼ p0

i1 ;1
p0

i2 ;2
p0

i3 ;3
, where p0

l;j refers to the empirical
frequency of nucleotide l at codon position j (j ¼ 1;2;3) for that
gene (the ‘F3 � 4’ model in PAML), or empirical estimates of each
of the 61 codons may be used (the ‘Fcodon’ model in PAML).

Finally, the parameter l is set so that �P61
i¼1piQ ii ¼ 1, which scales

time along the tree to be in units of expected numbers of nucleo-
tide substitutions per codon. Finally, we note that the model above
satisfies the condition of time reversibility, i.e., piQ ij ¼ pjQ ji for all i
and j. Given a particular Q matrix, PðtÞ can be calculated using
standard numerical algorithms (see Yang (2006), Moler and Van
Loan (2003), Golub and van Loan (1996) for details).
2.2. Background: modeling protein translation

Using the approach developed in Gilchrist (2007), we can calcu-
late the cost of producing a complete and functional protein pro-
duct in the face of nonsense errors. Briefly, the production cost of
a protein is equivalent to the ratio of the expected cost to the
expected benefit, i.e. functionality, of a protein produced from a
given coding sequence (Gilchrist et al., 2009). Functionality is
defined on a 0–1 scale relative to the functionality of a complete
and error-free protein produced from the coding sequence. This
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allows us to avoid having to consider the specific biological role a
protein plays.

Let qj represent the probability of elongation of a codon of type
j, where j ranges over the 61 sense codons (AAA; . . . ; TTT). Let the
codon at position i of a gene of length n be represented by ci, where
i ¼ 1;2; . . . ;n. The probability that the codon at the ith position,
will be successfully translated is given by pi ¼ qci

, and thus 1� pi

represents the probability that a nonsense error occurs at that
codon. It follows that the expected cost of translating a coding
sequence~c ¼ fc1; c2; c3; . . . cng of length n, is

E Costj~cð Þ ¼
Xnþ1

i¼1

bi

Yi�1

j¼1

pj

 !
ð1� piÞ: ð1Þ

where bi represents the energetic investment, in Adenosine
Tri-Phosphate molecules (ATPs), of translating i codons successfully.
Note that the summation is taken up to nþ 1 to account for the stop
codon and ð1� pnþ1Þ ¼ 1 by definition. In general, bi ¼ a1 þ a2i
where a1 and a2 represents the cost of translation initiation and
protein elongation, respectively, and a1 ¼ a2 ¼ 4 ATP.

In order to calculate the expected functional benefit of a protein
produced from a coding sequence~c we begin with the simplifying
assumption that truncated proteins have zero functionality.
Because we measure functionality on a relative scale, such that a
complete, error free protein has a functionality of 1, it follows that
this expected functionality of a gene is simply equal to the
probability of producing a complete protein such that,

E Benefitj~cð Þ ¼
Yn
i¼1

pi: ð2Þ

Then the expected cost-benefit of protein production for a given
codon sequence, which we call the protein production cost for brev-
ity, is gð~cÞ ¼ E Costj~cð Þ=E Benefit~cjð Þ. By including the denominator
into the summation term, we can re-write this as

gð~cÞ ¼
Xn
i¼1

bi

Yn
j¼iþ1

1
pj

 !
1� pi

pi
þ bnþ1; ð3Þ

(see Gilchrist et al. (2009) for more details).
Due to the non-linear nature of the protein production cost g,

the effect of changing codon ck to codon c0k at position k on g will
depend on the codons at the other sites. In other words, the effect
of a codon substitution on g is not independent between sites. To
take such inter-dependence explicitly into account when trying
to formulate the substitution rate matrix Q would be unfeasible
computationally. However, given that the probability of a nonsense
error at a codon, 1� pi, is much smaller than the elongation prob-
ability pi (Gilchrist, 2007), the first-order approximation of Eq. (3)
can be written as

gð~cÞ ¼
Xn
i¼1

bi
1� pi

pi

� �
þ bnþ1 ð4Þ

Since different codons have different elongation probabilities, gð~cÞ
will vary between alleles of a coding sequence. More
specifically, if two alleles, ~c ¼ fc1; c2; c3; . . . ; ck; . . . ; cng and
~c0 ¼ fc1; c2; c3; . . . ; c0k; . . . ; cng, differ at codon k and gð~cÞ > gð~c0Þ then
allele ~c0 should be favored by natural selection because of its lower
protein production cost. Based on Eq. (4), the cost of substituting
codon ck with c0k depends only on the position k and the elongation
probabilities of the two codons involved, pk and p0

k:

Dgc0
k
;ck

¼ gð~c0Þ � gð~cÞ ð5Þ

¼ bk

1� pc0
k

pc0
k

� 1� pck

pck

 !
ð6Þ
The goal of our work is to incorporate these differences in pro-
tein production costs due to inter-codon variation in elongation
probabilities into our substitution model.

2.3. A new codon substitution model: MutNSE

The main idea behind our new model, which we call MutNSE to
indicate that the model incorporates both the mutation process
and nonsense errors, is to combine the features of the models
described in the previous two subsections in order to incorporate
two separate features of the process of the codon substitution in
an explicit manner. These features are (1) the typically modeled
rate biases (transition/transversion and synonymous/nonsynony-
mous), and (2) the change in the probability of the protein being
ultimately produced following substitution of one amino acid by
another. For (2), we note that the probability of successful protein
production following codon substitution varies throughout the
sequence. We take this aspect of the model into account by speci-
fying a different instantaneous rate matrix Q for each codon posi-
tion k in the sequence as follows:

Qk
ij ¼ QijNepðck ! c0kÞ ð7Þ

where Qij refers to the substitution rates in the standard codon sub-
stitution model of choice, Ne is the effective population size and
pðck ! c0kÞ is the probability of fixation of codon c0k from codon ck.
Assuming an exponential function linking the cost-benefit ratio of
protein production to fitness (Gilchrist, 2007; Gilchrist et al.,
2009; Shah and Gilchrist, 2011), we get

Qk
ij ¼ QijNe

1� e
�ADgc0

k
;ck

1� e
�ANeDgc0

k
;ck

 !
ð8Þ

where Dgc0
k
;ck

is defined in (6). Selection on codon usage has been

known to vary between genes. In particular, codon usage in genes
with low expression is driven by patterns of mutation biases, while
codon usage in high expression genes is primarily driven by natural
selection (Sharp and Li, 1986; Bulmer, 1991; Shah and Gilchrist,
2011; Wallace et al., 2013). The parameter A scales the contribution
of selection on codon usage to the overall substitution rate and is a
free parameter in our model that we estimate. When there is no
selection on codon usage, then A � 0 and the model reduces to
the standard codon substitution model. When A is large, the substi-
tution probabilities depend primarily on changes in protein produc-
tion costs g. Finally, by assuming a ¼ NeA and taking first order
Taylor series expansion around Dgc0

k
;ck

¼ 0, the instantaneous rate

matrix Q simplifies to

Qk
ij � Qij

aDgc0
k
;ck

1� e
�aDgc0

k
;ck

 !
ð9Þ

Our model makes certain simplifying assumptions about the evolu-
tion of tRNA copy number and expression levels of genes. Similar to
other codon-based models of protein evolution that incorporate
selection on individual codons, we assume that the selection on
synonymous codons remains fairly constant across the phyloge-
netic breadth of organisms under consideration. In our mechanistic
framework, this translates to the assumption that the variation in
tRNA copy numbers and expression levels of genes is quite small
across the phylogeny.

Our model requires calculation of separate Q and PðtÞ matrices
for each codon position k in the sequence. Because this is compu-
tationally intensive, we have developed a Graphical Processing
Unit (GPU) implementation of this step of the method. In the past
few years, GPUs have made a significant contribution to scientific
computing due to their ability to perform massive parallel
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calculations. GPU-based algorithms have now made their way into
mainstream computing in many fields, see for example, Suchard
and Rambaut (2009), Suchard et al. (2010), Lee et al. (2010), Cron
and West (2011), Herbei and Kubatko (2013). The work described
in this paper has been implemented and tested initially on a
NVIDIA Tesla C2075 GPU while the bulk of the computing was
done on the OAKLEY cluster at the Ohio Supercomputing Center
(http://www.osc.edu), which has 128 Tesla M2070 GPUs.

For this work we require fast, parallel evaluation of the transi-
tion matrix PðtÞ ¼ expðtQ Þ. Due to the complexity of our approach
and the size of the problem (a typical gene has �300–400 codons),
a sequential evaluation/approximation for each of the required
matrix exponentials is far too inefficient. The speed gained by dis-
tributing this computing aspect to the GPU comes from the ability
of the user to pre-specify a computing array of independent
threads. Each thread will evaluate a matrix exponential for a given
combination of site/branch length/rate matrix. It is well known
that exact evaluation of a matrix exponential can only be done in
a few particular cases, while in general, an approximation algo-
rithm is required. A suite of algorithms and their performance is
discussed in Moler and Van Loan (2003), Golub and van Loan
(1996). For this work, we implemented Method 3 described in
Moler and Van Loan (2003), see also Algorithm 11.3–1 of Golub
and van Loan (1996). Note that, for a matrix A,

eA ¼ eA=m
� �m

;

for any integer m P 1. When m is selected to be a power of 2, the
exponential eA is then obtained through repeated squaring. For
the matrix eA=m, we use the Padé approximation, see Moler and
Van Loan (2003), page 9. This approach is characterized as ‘‘the only
generally competitive series method” (Moler and Van Loan, 2003)
and requires basic matrix algebra (matrix scaling/multiplication),
thus it is very suitable for parallel computing. The GPU implemen-
Table 1
Models considered in this study, along with number of parameters estimated. The
notation pi refers to nucleotide frequencies, and involves 3 parameters sinceP

i2fA;C;G;Tg ¼ 1;pi;j refers to nucleotide frequencies at each codon position j ¼ 1;2;3,
and involves 9 free parameters; pJ refers to codon frequencies, and involves 60 free
parameters, corresponding to the 61 sense codons. In the number of parameters to be
estimated listed in the table below, we do not include branch length parameters,
since this number will be the same under all models.

Model Parameters estimated Total number
of parameters

M0, equal frequencies j;x 2
MutNSE, equal frequencies a;j;x 3
M0, F1 � 4 pi;j;x 5
MutNSE, F1 � 4 pi; a;j;x 6
M0, F3 � 4 pi;j;j;x 11
MutNSE, F3 � 4 pi;j; a;j;x 12
M0, Fcodon pJ ;j;x 62
MutNSE, Fcodon pJ ; a;j;x 63
FMutSel pi;pJ ;j;x 65

Table 2
Number of yeast genes (of 104 total genes) for which the newly proposed model (MutNSE)
compared (see Table 1) and the fourth column gives the number of yeast genes for which

Comparison Model 1

1 MutNSE, equal frequencies
2 MutNSE, F1 � 4
3 MutNSE, F3 � 4
4 MutNSE, F3 � 4
5 MutNSE, Fcodon
6 MutNSE, Fcodon
7 MutNSE, F3 � 4
tation results in an approximately 40-fold reduction in computation
time over a standard CPU application.

2.4. Model comparison

We compare the fit of our proposed model with several models
in PAML using the AIC (Burnham and Anderson, 2002). Denoting

the maximized likelihood under our new model by bLMutNSE and

the maximized likelihood under the model in PAML by bLPAML, the
AIC for each model is computed using

AIC ¼ �2 lnðbLiÞ þ 2ri ð10Þ
where i refers to either the MutNSE model or one of the models in
PAML, and ri is the number of parameters in model i.

The models we consider are listed in Table 1. In particular, we
consider the MutNSE model with four different choices for the
codon frequencies (‘Fequal’, ‘F1 � 4’, ‘F3 � 4’, and ‘Fcodon’), as well
as the M0 model in PAML with the same four choices for the codon
frequencies. Finally, we consider the mutation–selection model of
Yang and Nielsen (2008) as implemented in PAML (FMutSel). We
compare the MutNSE model against the corresponding M0 model,
as well as against the FMutSel model, resulting in seven separate
comparisons (Table 2).

2.5. Application to yeast protein-coding genes

We applied our model to the 104-gene data set of Rokas et al.
(2003). We fixed the tree topology to be the ML tree found by these
authors (see Fig. 1(a)), and then estimated the MLEs of all model
parameters (e.g., j;x; a and the branch lengths) along this fixed
tree. We compared the fit under various models using the AIC, as
described above. We also compared the parameter estimates for
j and x under the new model and under the M0 model.

Because the parameter a in the MutNSE model can be inter-
preted as a measure of the extent to which selection on codon
usage contributes to the overall substitution rate, we hypothesized
that a should be correlated with the rate of protein production. To
examine this, we obtained protein production rates, /, for all S.
cerevisiae genes from Yassour et al. (2009). We assume strong puri-
fying selection on protein production rate of the genes considered
here. Thus / values estimated in yeast are used as proxies for /
across the phylogeny.

Finally, we wanted to examine whether use of the new model
would impact the preferred topology under the maximum likeli-
hood criterion. To examine this, we considered two candidate
topologies (Fig. 1). Various studies using these data in different
modeling frameworks have preferred one or the other of these
trees (see, for example, Edwards et al. (2007)). For each gene, we
obtained the maximized value of the likelihood under both the
MutNSE model and the models in PAML. We counted the number
of genes for which a different tree was preferred based on the like-
lihood under the various models.
was preferred over an existing model. The second two columns list the models being
the MutNSE model was preferred using AIC.

Model 2 Number of times
Model 1 was preferred

M0, equal frequencies 104
M0, F1 � 4 23
M0, F3 � 4 100
M0, Fcodon 31
M0, Fcodon 17
FMutSel 0
FMutSel 3

http://www.osc.edu
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Fig. 1. Two phylogenetic trees for the yeast data. The tree in (a) was found by Rokas et al. (2003) to be the ML tree for the concatenated data. The tree in (b) has been proposed
by several authors (see, e.g., Edwards et al. (2007)) to be a plausible species-level phylogeny for yeast.
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â)

0.01 0.02 0.03 0.04 0.05 0.06 0.07

-7
-6

-5
-4

-3
-2

^  (MutNSE, F3x4)

lo
g(

â)
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Fig. 2. Parameter estimation results for the yeast genes for the MutNSE, F3 � 4 model and the M0, F3 � 4 model. (a) Comparison of the values of the parameter j estimated
for the MutNSE and for the M0 model. (b) Comparison of the values of the parameterx estimated for the MutNSE model and for the M0model. In both (a) and (b), the line has
slope 1 and represents equality of parameter estimates in the two models. (c) Plot of the estimated value of a, which determines the relative importance of codon usage in
driving sequence evolution, versus an independent estimate of the rate of protein production, / (see text for details on how the estimates of /were obtained); the correlation
coefficient is 0.64. (d) Plot of the estimated values of a versus the estimated value of j in the MutNSE model. (e) Plot of the estimated values of a versus the estimated value of
x in the MutNSE model. (f) Plot of the estimated values of a versus sequence length in base pairs (bp).
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3. Results

The model comparison results for each of the seven
comparisons are shown in Table 2. The MutNSE model is preferred
at least 85% of the time when it is compared to the corresponding
M0 model with a relatively simple model for estimating the codon
frequencies (i.e., ‘Fequal’, ‘F1 � 4’, and ‘F3 � 4’). However,
when codon frequencies are estimated using the empirical
frequencies, the MutNSE model is only preferred about 25% of
the time. When the mutation–selection model FMutSel is used,
the MutNSE model no longer provides better fit, except for a couple
of genes.
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Fig. 2 shows various relationships between parameter estimates
for both the MutNSE and the M0 models in the case when the
‘F3 � 4’ estimates of codon frequencies were used (results for the
other cases are similar and are not shown here). Fig. 2(a) and (b)
compare the estimates of j and x under the two models, with
the line indicating equality of the estimates. In both cases, the esti-
mates under the MutNSE model and under the M0 model are
highly correlated, with a slight bias toward higher estimates of
both parameters under the M0 model. In particular, there are sev-
eral genes for which the estimates of x are larger under the M0
model. This may be an important finding, as this parameter is often
used as a test for and measure of the strength of either purifying or
diversifying selection across a gene.

Fig. 2(c) shows that the estimated value of the MutNSE model
parameter a is highly correlated with observed protein production
rate (/) of yeast genes. This suggests that selection against non-
sense errors plays a significant role in affecting the evolutionary
rate of highly expressed genes.

Fig. 2(d)–(f) examine the relationship between the estimated
values of a and of other characteristics of the model, specifically
the estimated values of j, of x, and the sequence length, respec-
tively. We expect no relationship among these quantities and that
is, in fact, what is observed in these plots.

To examine consistency of model preference across genes, we
compared the model selected across all genes. Fig. 3 shows genes
(x-axis) for which the MutNSE model is preferred (indicated with
a colored dot) across the various model comparisons (y-axis;
height of the points corresponds to the comparison number in
Table 2). It is clear that there is consistency across comparisons
overall, though there are also differences. In particular, results for
the first three comparisons (in which the MutNSE model is pre-
ferred the majority of the time) are very consistent, while there
is less consistency across comparisons 4 and 5 (in which the
MutNSE model is only preferred 25% of the time).

We also compared the MutNSE model to the M0 model with
‘F3 � 4’ in terms of which of the two topologies in Fig. 1 was pre-
ferred under each model using the likelihood value. The MutNSE
model had a higher likelihood for the tree in Fig. 1(a) for 102 of
the 104 genes, while the M0 had a higher likelihood for only one
of the 104 genes. This means that for 101 of the 104 genes, the like-
lihood criterion would order the two trees in Fig. 1 differently
under the MutNSE model versus the M0 model. Thus, model choice
can impact estimation of the phylogeny.

Finally, we note that because the MutNSE model is site-specific,
likelihood computations using the model are non-trivial. The GPU
computing machinery used here is crucial to obtaining phyloge-
netic estimates in reasonable time. Using the OAKLEY Cluster at
the Ohio Supercomputer Center, each likelihood evaluation takes
under a minute, and full optimization of all model parameters
(including branch lengths) along a fixed tree requires between
5 min and 2 h for most genes. We point out that the only step of
our implementation that takes advantage of GPU computing is
the computation of transition probabilities for each site. Likelihood
computation across a tree has also been implemented in a GPU
framework (Ayres et al., 2012) and this would speed computations
even further.
4. Discussion

Overall, our results indicate that incorporating selection on syn-
onymous codon usage is an important component of a codon sub-
stitution model, as has been noted by others (Yang and Nielsen,
2008; Nielsen et al., 2007; Zhou et al., 2010; Rodrigue et al.,
2010). We found that when simple models of codon frequencies
were used, our MutNSE model was preferred over the M0 model
for the majority of data sets (>85% of genes in the yeast data set).
However, when empirical codon frequencies were used in both
models, the new model was preferred for only about 25% of the
genes, and when a model that incorporates both mutation and
selection was used (the FMutSel model), our model was generally
not preferred using the AIC. This is not completely unexpected,
because the FMutSel model is parameterized so that estimates of
the selection parameters are obtained empirically, while our
MutNSE model incorporates the effect of codon usage via the inclu-
sion of elongation probabilities that are obtained independently
and are fixed across genes. However, the set of comparisons made
here highlights the importance of realistic models for both codon
frequencies and for the process of selection. This is particularly
apparent by noting that the MutNSE model preferred the tree in
Fig. 1(b) over that in Fig. 1(a) for 102 of the 104 genes, while the
corresponding M0 model only preferred the tree in Fig. 1(b) for a
single gene. Thus the choice of substitution model can have an
important impact on phylogenetic inference.

An important feature of our MutNSE model is that it is able to
accurately predict the level of protein production. For genes with
high expression (/), we find that selection on codon usage against
translation errors is a significant determinant of evolutionary rate
(see also Drummond et al. (2006)). This observation is particularly
important given that genes used in building phylogenies tend to
have a broad phylogenetic breadth, and are highly expressed (Nei
et al., 1997, 2000; Eirín-López et al., 2004). Thus, it is essential to
develop models of codon substitution that explicitly take into
account the effects of selection on synonymous codons and how
they change with gene expression. We expect that such models
should improve both the reliability and accuracy of the parameters
estimated as part of phylogenetic analyses, especially in terms of
evaluating whether the ratio of synonymous to non-synonymous
substitutions is consistent with stabilizing vs. diversifying selec-
tion on the amino acid sequence of a gene.

The model presented here takes into account selection on syn-
onymous codon usage against premature termination. However,
patterns of codon usage are also under selection pressures for
translation accuracy (Akashi, 1995; Drummond and Wilke, 2008,
2009) and efficiency (Bulmer, 1991; Plotkin and Kudla, 2011;
Shah and Gilchrist, 2011). Although the relative importance of
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these pressures are actively debated in the field, the selective
advantage of a synonymous codon for both efficiency and accuracy
has been shown to be correlated with its tRNA abundance (Shah
and Gilchrist, 2011; Wallace et al., 2013), as has been assumed
here. Because we incorporate selection on codon usage in a mech-
anistic manner, expanding our model to include these additional
selective forces is possible in future implementations. Such exten-
sions should not only improve our ability to reconstruct evolution-
ary relationships based on DNA sequence data, but also potentially
extract additional information on key parameters related to the
protein translation process itself such as codon-specific nonsense
error rates or ribosome pausing times.
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