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Abstract 10 

Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the 11 
genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the 12 
molecular mechanisms of complex adaptations difficult. Here we use the E. coli long-term evolution 13 
experiment (LTEE) as a model to address this challenge. To bridge the gap between disparate genomic 14 
changes and parallel fitness gains, we characterize the landscape of transcriptional and translational changes 15 
across 11 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes 16 
in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in 17 
mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, 18 
clones from replicate populations in the LTEE are remarkably similar to each other in their gene expression 19 
patterns at both the transcriptional and translational levels. Furthermore, we show that the bulk of the 20 
expression changes are due to changes at the transcriptional level with very few translational changes. 21 
Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the 22 
expression levels of downstream genes, thereby linking genomic changes to parallel fitness gains in the 23 
LTEE. These results deepen our understanding of the molecular mechanisms underlying complex 24 
adaptations and provide insights into the repeatability of evolution. 25 

 26 
Introduction 27 

Comparative genomic approaches and large scale mutation experiments have allowed us to map 28 
genetic changes to phenotypic changes underlying adaptation in many cases involving individual genes such 29 
as hemoglobin1, hormone receptors2, and influenza proteins3,4. However, when organisms adapt to novel 30 
environments such as during yeast evolution under nutrient limitation5–7, adaptation to high-temperature 31 
stress8, bacterial evolution during infections9, and long-term adaptation of Escherichia coli to minimal media10–32 
13, genomic changes are widespread. Understanding how these changes lead to functional changes at the 33 
molecular level is critical to understand the mechanistic basis of adaptations. 34 
 35 

Here we use the E. coli long-term evolution experiment (LTEE) as a model system to characterize the 36 
mechanistic basis of adaptation to a novel environment. In LTEE, 12 replicate populations of E. coli have 37 
been evolving in parallel for over 75,000 generations. Recent studies using LTEE have quantified the 38 
dynamics of fitness growth14, identified the proportion of beneficial mutations12, characterized mutational 39 
dynamics in the system13,  and identified the mechanistic basis of specific adaptations such as citrate 40 
utilization in Ara-315.  Despite significant contributions to the understanding of adaptation in the LTEE, the role 41 
that changes in transcription and translation play in increasing growth rates remains unexplored. An earlier 42 
study of gene expression changes in LTEE showed parallel changes in transcription profiles in two of the 43 
twelve evolved lines, Ara-1 and Ara+1, at 20,000 generations using radioactive microarrays16. Whether 44 
parallelism in gene expression changes extends to the other lines and persists over a more extended period 45 
remains unknown. Furthermore, since changes at the transcriptional level can be buffered at the translational 46 
level17,18, changes to both must be considered. Finally, significant changes in cell-size of the bacteria19,20 over 47 
the course of adaptation indicate a need to quantify both relative and absolute changes in expression. 48 



Results 49 
To address these questions, we performed RNA-seq and ribosomal footprinting (also called Ribo-50 

seq)21 in the exponential phase of the ancestral strains and single clones from each of the 12 evolved lines 51 
at 50,000 generations (Fig. 1A). We analyzed single clones from Tenaillon et al. 2016 and considered 4216 52 
protein-coding genes from the ancestors. We aligned sequencing data for each evolved clone to its unique 53 
genome. We restricted our analysis to 11 out of 12 evolved lines due to ancestral contamination in one of our 54 
samples (Ara+6). We averaged between 151 and 1693 reads per gene across the 52 libraries (Fig. S1A, 55 
Table S1). The distributions of read counts per gene were similar across lines, replicates, and sequencing 56 
methods (Fig S1C). We also observed a clear three-nucleotide periodicity in our Ribo-seq datasets (Fig. S1B, 57 
Table S2). 58 
 59 
Evolved lines are larger and carry more mRNAs 60 

Contrary to expectations, every evolved line in the LTEE has become larger in size compared to the 61 
ancestor19,20,22. While bacterial size (cell volume) is a function of its growth rate, which typically depends on 62 
nutrient availability23–25, the increase in cell size in LTEE is not entirely a consequence of faster growth rate19. 63 
This increase appears to be under selection and is partly caused by mutations in Penicillin-binding protein 64 
genes, which also led to the increased circularity of the cells26. Moreover, cultures of the evolved lines were 65 
recently found to have higher biomass with proportionally higher amounts of nucleic acids compared to the 66 
ancestors27. Because changes to cell volume can affect transcription rates and alter relative concentrations 67 
of RNA molecules28, we chose to quantify changes in the absolute abundance of mRNAs. 68 
 69 

We used phase-contrast microscopy to measure the size and shape of cells in each of the ancestral 70 
and evolved lines and calculated cell volume based on these measurements (see methods, Table S3). We 71 
find that each evolved line has a larger volume than the ancestor (Welch's t-test, p < 0.0001 for all lines) (Fig. 72 
1B). We also find that evolved lines form filaments more frequently and formed longer filaments than the 73 
ancestor (see Supplementary Analysis). However, the larger size of evolved lineages is not entirely due to 74 
higher filamentation. Even after filtering out filaments (cells >3x median volume), all evolved lines were still 75 
significantly larger compared to the ancestor (Welch's t-test, p < 0.0001 for all lines) (Fig. S2B).  76 

 77 



Figure 1: A. Schematic of the experimental design. B. All evolved lines are larger than the ancestral strain. 78 
Distributions of cellular volume as determined by phase-contrast microscopy and assuming sphero-cylindrical 79 
shape of E. coli along with representative images for each line. Numbers underneath a line's name indicates 80 
the total number of cells imaged (scale bar is 10um, see Figure S3 for representative images.). The dashed 81 
line indicates the ancestral median, p-values indicate the results of a t-test when each line is compared to the 82 
ancestor, **** p ≤ 0.0001. Lines listed in red have mutator phenotypes. C. Spike-in RNA control abundances 83 
are correlated with their estimates in sequencing data. Linear models relating the number of molecules of 84 
each ERCC control sequence added to their RNA-seq TPM (transcripts per million) in Ara+1 RNA-seq 85 
samples (see Fig. S4 for all lines). D. Most genes have a higher absolute expression in evolved lines. Changes 86 
in the absolute number of mRNA molecules per CFU (colony forming unit) in the 50,000th generation of Ara+1 87 
relative to the ancestor. The values plotted are the average between 2 replicates of the evolved lines and 88 
both replicates from both ancestors (REL606 and REL607; see Fig. S4 for all lines). E. Absolute changes in 89 
mRNA abundances in evolved lines are significantly larger than the variation between biological replicates (t-90 
test, p < .0001 in all cases). Distributions of fold-changes of mRNA molecules per CFU. Pink curves indicate 91 
gene-specific fold-changes between biological replicates for each line (centered around 1). Purple curves 92 
show the fold-change from the 50,000th generation of an evolved line to the ancestor. Fold-change was 93 
calculated in the same manner as in D. F. Larger evolved lines have more mRNA per CFU. Relationship 94 
between the median volume for each line and the total number of RNA molecules per CFU for each line. Total 95 
molecules of RNA are calculated as the sum of the average number of molecules for each gene between 96 
replicates. 97 
 98 

To measure how changes in cell size affect absolute RNA abundances, we measured the number of 99 
colony-forming units (CFU) that went into each library (Table S4). We added the ERCC RNA spike-in 100 
controls29, a set of 92 RNA oligos in known amounts, to our RNA-seq libraries (table S5). This allowed us to 101 
quantify the number of molecules per CFU for each transcript. We find a linear relationship between the 102 
number of molecules of ERCC oligos and the number of transcripts quantified using RNA-seq (TPM) (Fig. 103 
1C, S4A). Fold-changes in absolute counts ranged widely in each of the lines (Fig. 1E, Table S6) but were 104 
overwhelmingly greater than one. Moreover, the increase in mRNA abundances in evolved lines relative to 105 
the ancestor were greater than differences in abundances between corresponding biological replicates (Fig. 106 
1E, t-test, p < .0001 in all cases). This suggests that all evolved lines have more mRNA molecules compared 107 
to the ancestral strains. Finally, we show that evolved lineages with larger cells have more mRNAs (Fig. 1F), 108 
suggesting that absolute abundances of mRNAs scale with cell size.  109 
 110 
Gene expression changes are parallel at both transcriptional and translational levels  111 

Despite a high degree of parallelism in fitness, few mutations are shared across the evolved lineages, 112 
and each of the lines was founded on a unique set of mutations12. At the gene level, only 57 genes have 113 
mutations in two or more lines12. Moreover, it remains unclear if the functional effects of these mutations are 114 
similar across lines. To bridge the weak parallelism at the genotypic level with the strong parallelism at the 115 
fitness level, we took gene expression as a molecular phenotype and quantified transcription and translation. 116 
Earlier radioactive microarray-based experiments with two evolved lineages (Ara+1 and Ara-1) at 20,000 117 
generations have showed that the expression patterns between the two evolved lines were more similar to 118 
each other than either were to the ancestor16. However, it remains unclear if the pattern of parallel gene 119 
expression changes is identical across all evolved lineages and has remained mostly parallel over a more 120 
extended period.  121 

 122 
We find that expression levels of genes were surprisingly similar across evolved lineages. Pairwise 123 

correlations based on TPM showed a high degree of similarity among the evolved lines for RNA-seq and 124 
Ribo-seq datasets (Fig. S5A, Table S1). Interestingly, pairwise correlations between evolved lines were not 125 
significantly different from correlations between evolved lines and the ancestors (Fig. S5B). This suggests 126 



that expression patterns of many genes remained mostly unchanged over 50,000 generations. We then 127 
sought to systematically quantify the degree of expression changes in both RNA-seq and Ribo-seq datasets 128 
using DESeq230 in each of the evolved lines (Table S7). Overall, half of all genes across all lines had less 129 
than a 30% change in their expression levels (Fig. S5C). However, several genes showed large changes in 130 
their expression patterns that varied by a thousand-fold (log2 fold-change > 10).  131 

 132 

 133 
 134 
Figure 2: A. Parallelism in expression changes across evolved lines. The fold-changes of top 100 down and 135 
upregulated genes in each of the lines in the RNA-seq datasets. Genes are ordered from left to right in order 136 
of increasing mean fold-change across evolved lines. Gray bars represent gene deletions. B. Downregulated 137 
genes have larger effect sizes than upregulated genes. Distribution of statistically significant fold-changes in 138 
each line. Statistical significance was based on DESeq2 results using q ≤ 0.01. C. Pairwise correlations of 139 
evolved lines based on all (yellow curve) or only statistically significant (blue curve) RNA-seq fold-changes. 140 
Each of these curves is significantly different from a distribution based on correlations made after randomizing 141 
the fold-changes (grey curve) within each line (p ≤ 0.01, t-test). D. Fold-changes in expression levels of genes 142 
in evolved lines scale negatively with their ancestral expression levels. The relationship between ancestral 143 
TPM in the RNA-seq dataset and RNA-seq fold-change in Ara+1. The red dots represent significantly altered 144 
genes, and the black dots represent the remaining genes. E. The number of significantly down and 145 
upregulated genes in each line. 146 
 147 



We find a high degree of parallelism in expression changes at both the transcriptional and translational 148 
levels (Fig. 2 and S6). The top 100 up and downregulated genes (defined as having the largest mean positive 149 
or negative fold-change across the evolved lines) showed remarkably similar fold-changes (RNA-seq, Fig. 150 
2A; Ribo-seq, Fig. S6A). Distributions of all pairwise comparisons of fold-changes in evolved lines showed 151 
positive correlations, which became even more positive when considering only statistically significant genes 152 
(RNA-seq, Fig. 2B; Ribo-seq, Fig. S6D). Interestingly, we find that a higher number of genes were 153 
downregulated than upregulated across most lines (RNA-seq, Fig. 2E; Ribo-seq, Fig S6C). Moreover, the 154 
magnitude of downregulations was larger than that of upregulations in all but Ara+3 (Welch's t-test, p < 0.05 155 
in all cases) (RNA-seq, Fig. 2B; Ribo-seq, Fig S6B). Surprisingly, evolved lines arrived at similar 156 
transcriptional and translational profiles regardless of whether they had a mutator phenotype or not (Fig. S6E).  157 
 158 

 159 
Figure 3: A. The number of non-mutator lines in which a gene has at least one SNP inside the coding 160 
sequence. B. The number of evolved lines in which a gene's expression level was significantly altered (q ≤ 161 
0.01) was based on the DESeq2 results for RNA-seq datasets. C. Frequently altered genes are typically 162 
downregulated. The proportion of up and downregulated genes as a function of their frequency of expression 163 
changes across lines. D. Frequently downregulated genes have larger effect sizes than upregulated genes. 164 
Distributions of the RNA-seq fold-changes for the genes in the x-axis categories of C. 165 

 166 
We next examined if changes in expression levels of a gene were somehow related to their expression 167 

in the ancestor. When we considered all genes, we observed a weak negative relationship between ancestral 168 
TPM and fold-change in an evolved line (Fig. 2D, S6F). This negative relationship is likely a by-product of the 169 
overall increase in mRNA abundances with cell-size. Due to biophysical constraints, genes with high ancestral 170 
expression are unlikely to see large increases in mRNA abundances relative to genes with low expression. 171 



As a result, genes with low ancestral mRNA abundances appear more upregulated when considering only 172 
relative expression levels. However, when only statistically significant genes were considered, we see a very 173 
strong negative relationship in most lines. The slope of this relationship is distinctly more negative than for all 174 
genes. Additionally, the proportions of significantly upregulated genes decreased with the ancestral gene 175 
expression level for most lines (Fig. S6G).  176 

 177 
We observed high levels of parallelism in expression changes despite few shared mutations across 178 

multiple lines (Fig. 3A, Table S8). We find that both the proportions of downregulated genes and their 179 
magnitude of downregulation increased with the number of lines a gene was significantly altered in (Fig. 3C 180 
and D), indicating that more downregulations were shared across lines than upregulations. This implies that 181 
there are fewer genes and pathways whose downregulation increases fitness, whereas genes and pathways 182 
whose expression increases enable higher fitness are more varied and unique to each line. We find similar 183 
patterns for the Ribo-seq datasets (Fig. S7). 184 
 185 
Transcriptional changes drive translational changes 186 

Translational regulation affects the rate at which an mRNA produces its protein product. Different 187 
mRNAs are translated with varying efficiencies in both eukaryotes and prokaryotes21,31,32. However, the role 188 
of changes in translational regulation during adaptation and speciation remains poorly understood and is 189 
heavily debated18,33. To study translational changes, we performed high-throughput ribosome-footprinting in 190 
both the evolved lines and their ancestors. 191 
 192 

Interestingly, we find that gene-specific ribosome-footprint abundances were highly correlated with 193 
mRNA abundances (R ≥ 0.92 for all lines, Fig. 4A and S8A). Since the number of ribosome-footprints from a 194 
gene also depends on its mRNA abundances, we used Riborex34 to evaluate gene-specific changes in 195 
ribosomal-densities in each of the evolved lines relative to the ancestor. Surprisingly, we find very little 196 
evidence of translational changes (Fig. 4B, Table S9). The number of genes with significantly altered (q ≤ 197 
0.01) ribosome-densities ranged from 0-6 genes across all lines, with a total of only 18 unique genes showing 198 
altered ribosome-densities. Overall, changes in ribosome-densities on transcripts were sparse, suggesting 199 
that transcriptional changes are the dominant force behind expression changes in the LTEE. 200 

 201 



Figure 4: A. Translational changes are positively correlated with transcriptional changes. The relationship 202 
between RNA-seq and Ribo-seq TPM in Ara+1. The TPMs are averaged between the replicates. B. The 203 
distribution and identity of genes with significantly altered ribosomal densities (q ≤ 0.01). C. Evolved lines 204 
have faster translation termination. Stop codons had lowered ribosome density compared to amino acid 205 
codons. Each point represents a stop codon from an evolved line, and the y-axis is fold-change in ribosomal 206 
density relative to the ancestor. P-value based on a t-test. D. Fold-changes in expression levels of translation 207 
termination factors and related genes ykfJ, prfH, prfA, prmC, prfB, fusA, efp, prfC. E. Changes in codon-208 
specific ribosome densities in each of the evolved lines relative to the ancestor. Codons are arranged from 209 
left to right in order of increasing mean fold-change for their respective amino acid across the lines. 210 
 211 

While ribosome-density changes reflect changes to the overall number of ribosomes per transcript, 212 
they do not reveal information about the translation of specific codons or amino acids. We find that the 213 
ribosome-densities at stop codons were significantly lower in all the evolved lines than in the ancestors (Fig. 214 
4C and 4E, Table S10), suggesting that translation termination was significantly faster in evolved lines. 215 
Translation initiation and termination are relatively slow processes compared to elongation. As a result, faster 216 
termination might be adaptive in that it allows faster recycling of ribosomes, thereby increasing overall protein 217 
synthesis rates. Furthermore, we reasoned that this change in stop-codon ribosome-densities might be due 218 
to changes in expression levels of proteins that aid translation termination, such as release factors. We 219 
examined changes in genes related to termination, namely frr (ribosome recycling factor35), fusA (elongation 220 
factor G36), prfABC (peptide release factors A, B, C37,38), and prmC (a methylase required for the function of 221 
prfAB39). These genes showed differing directions and magnitudes of alteration at the RNA level, and these 222 
changes were rarely statistically significant (Fig. 4D, S8C). prfB and prfC facilitate the release of a protein 223 
from the ribosome at a stop codon and were typically upregulated, indicating an increase in their expression 224 
might be responsible for faster translation termination.  225 
 226 

We also find higher ribosome-densities at Proline codons across all lines, indicating that elongation 227 
rates at these codons have slowed. Given this apparent slowdown at proline codons, we examined if genes 228 
involved in proline biosynthesis had altered expression levels. However, the three enzymes directly involved 229 
in proline biosynthesis - proA, proB, and proC, the proline tRNA ligase - proS, and elongation factor P involved 230 
in alleviating ribosome pausing at polyproline motif 40, were not significantly altered in any of the lines (Fig. 231 
S8B). We suspect that the higher ribosome-densities at Proline codons are likely due to lower levels of 232 
charged proline tRNAs. 233 
 234 
Transcriptional and translational changes of frequently deleted genes 235 

Large deletions are among the most frequent class of mutations in the LTEE11,12 and several gene 236 
deletions are shared across multiple evolved lineages (Fig. 5A). For example, the rbs operon is partially or 237 
entirely deleted in every evolved line, making them unable to catabolize ribose. This loss of rbs operon leads 238 
to increased fitness relative to the ancestor41. We also find that genes deleted entirely in at least four lines 239 
had lower expression in the ancestor (Fig. 5B). While the fitness benefit of specific deletions such as rbs 240 
operon has been experimentally validated, it is more challenging to systematically assess the effects of 241 
deletions in only some of the lines. This is especially true of the large deletions that encompass multiple genes 242 
of unrelated functions. Since downregulation and deletions of genes have similar functional effects (that is, 243 
removal of the gene product), we hypothesized that frequently deleted genes would be typically 244 
downregulated in lines where the gene was still present. Surprisingly, we find no enrichment in the 245 
downregulation of genes deleted in at least four lines (Fig. 5C). One reason for this lack of enrichment might 246 
be the mechanism by which most genes are deleted in LTEE. Deletions in LTEE are typically mediated by 247 
insertion-elements, spanning multiple kilobases and encompassing multiple genes (Fig. 5D). On average, 17 248 
genes were lost per deletion event. Our results suggest that while deletions of a few genes within these large 249 
deletions might be under selection, most of other deletions are simply genetic hitchhikers. 250 



 251 

 252 
Figure 5: A. The frequency with which a gene was deleted entirely across the lines. B. Frequently deleted 253 
genes have lower expression levels in the ancestors. The distributions of ancestral TPMs of genes were 254 
deleted entirely in at least four lines (red) or were never deleted in any of the lines (grey). P-values based on 255 
a t-test. C. Frequently deleted genes are not typically downregulated in lines where they are present. Heatmap 256 
represents RNA-seq fold-changes of all genes deleted in at least four lines. Genes are ordered from left to 257 
right in order of increasing mean fold-change across evolved lines. Gray bars represent gene deletions. The 258 
histogram above the heatmap indicates the frequency of deletion of corresponding genes in the heatmap. D. 259 
Number of genes deleted per large deletion in LTEE across all 12 lines. The dashed line indicates the average 260 
number of genes deleted per deletion (~17).  261 
 262 
Functional characterization of differentially expressed genes 263 

To identify functional categories and pathways that are altered as a result of expression changes in 264 
each line, we looked for enrichment in KEGG pathways42, gene ontology terms43, and pathway perturbation 265 
scores (PPS) from the BioCyc collection of databases44 (Fig. S10, Table S13, see methods for details on 266 
each). For these analyses, we considered deleted and pseudogenized genes as being downregulated.  267 

 268 
Though many categories were altered across the lines in the KEGG analysis (see Table S11 for 269 

complete results), we chose to focus on those that were significantly altered (FDR ≤ 0.05) in at least four lines. 270 
We find a high degree of parallelism between the evolved lines for KEGG pathways that are significantly 271 
altered based on RNA-seq datasets (Fig. 6A, C; see Fig. S9A for Ribo-seq scores). Consistent with earlier 272 
microarray experiments, we find that the flagellar assembly genes are significantly downregulated16 in 10 out 273 
of 11 evolved lines. In addition, because the evolved lines are growing in a stable environment over 274 
evolutionary timescales, it stands to reason that genes involved in responding to stress and environmental 275 
changes will be downregulated. As expected, we find that genes associated with biofilm formation, two-276 



component signaling pathways, and ABC transporters are all downregulated across most lines. Furthermore, 277 
we find that selection for faster growth in LTEE has led to significant increases in expression levels of genes 278 
involved in amino acid biosynthesis and sugar metabolism across all lines. These findings are also mirrored 279 
when we use Ribo-seq data for the KEGG analysis (Fig. S9A). 280 
 281 

 282 
Figure 6: A. Parallel changes in functional categories. KEGG enrichment scores from the RNAseq data. 283 
Enrichment score represents the degree to which a pathway was up (positive) or downregulated (negative). 284 
The functional categories are ordered by increasing the mean enrichment score across the lines. B. Pathway 285 
perturbation score (PPS) is calculated from RNA-seq fold changes. Higher PPS indicates larger degrees of 286 
alteration but does not indicate directionality. C. Pairwise correlations of KEGG enrichment scores for all 287 
pathways that were significantly altered in at least one line. D. Pairwise correlations of PPS scores. PPS 288 
scores for the randomized set was calculated by randomizing the fold-changes within each line.  289 
 290 

While KEGG pathway analysis encompasses molecular interactions and reaction networks, we 291 
wondered which specific metabolic pathways were altered across all lines and which ones remained mostly 292 
unchanged over 50,000 generations. Because E. coli REL606 is annotated in the Biocyc collection of 293 
databases, we used their metabolic mapping tool to score pathway alterations with a pathway perturbation 294 
score (PPS) in each of the evolved lines (see methods for a detailed explanation of the scoring). Similar to 295 
the KEGG pathway analysis, we find a high degree of parallelism, even at the level of specific metabolic 296 
pathways (Fig. 6B, D). Interestingly, 4 out of 5 most altered pathways are involved in lipopolysaccharides 297 
(LPS) biosynthesis, a major component of Gram-negative bacteria's outer membrane. This indicates that in 298 
addition to changes in cell size and shape, the composition of the evolved lines' outer membrane has 299 
significantly changed. Nonetheless, there is a core set of unaltered pathways, even in clones with a mutator 300 
phenotype. Pathways with low PPS scores, indicating low levels of alteration included D-serine degradation 301 
(mean RNAseq PPS =  0.12, sd = 0.13), pseudouridine degradation (mean RNAseq PPS = 0.11, sd = 0.06), 302 
and others (see Table S12 for complete PPS scores). These may represent pathways with activity levels that 303 
cannot be altered or whose alteration provides little to no fitness benefit.  304 
 305 
Mutations to transcriptional regulators explain many parallel expression changes 306 

Given the high degree of parallelism in evolved lines at the gene expression level, we wondered 307 
whether some of these patterns could be explained by a parallel set of mutations at the genetic level. Because 308 
KEGG, PPS, and GO analyses all identified metabolism and catabolism of various sugars to be significantly 309 
altered, we started by looking at mutations to genes involved in these categories. Previous work has shown 310 
that depending on the generation sampled, evolved clones grow poorly (20,000th generation) or not at all 311 
(50,000th generation) on maltose45. Because maltose is absent from the growth media in the LTEE, 312 
maintenance of these transporters is likely unnecessary46. Additionally, at 20,000 generations, the 313 
transcriptional activator of the operon responsible for maltose metabolism, malT, was the frequent target of 314 



mutations that reduced its ability to act as a transcriptional factor, and introduction of malT mutations in the 315 
ancestor had a fitness benefit46. In E. coli, MalT regulates the transcription of several operons - malEFG 316 
(maltose ABC transporter), malK-lamB-malM (MalK, part of maltose ABC transporter; LamB, maltose 317 
transporter; MalM, conserved gene of unknown function, MalPQ (two enzymes involved in maltose 318 
metabolism), and the genes malZ (maltodextrin glucosidase) and malS (an α-amylase). We find that each of 319 
these operons was consistently and significantly downregulated across all lines (Fig. 6E). Changes to the 320 
LamB transporter have also been shown to affect susceptibility to phage infection in the LTEE47.  321 
 322 

 323 
Figure 7. Mutations in transcriptional regulators lead to parallel changes in gene expression. RNA-seq fold-324 
changes for genes belonging to A. maltose-transport/metabolism and B. NAD biosynthesis. Gene names in 325 
each category are colored based on their operon membership. Mutations in transcriptional activator malT 326 
decrease expression of its downstream genes/operons. Mutations in transcriptional repressor nadR increase 327 
expression of its downstream genes/operons. Asterisks indicate statistical significance of fold-changes, ** q 328 
≤ 0.01, * q ≤ 0.05. Grey panels in the heatmap indicate gene deletion. Lower panels show the type and 329 
location of mutations in each transcription factor. 330 
 331 

In the LTEE, NadR, a transcriptional repressor of genes involved in NAD biosynthesis, is known to be 332 
frequently mutated, with many mutations occurring in its DNA binding domain 48,49. In fact, all evolved clones 333 
used in this study are known to have some mutation in nadR12. Given the high frequency of parallel inactivating 334 
mutations in nadR, it is likely that these mutations are adaptive as they might increase intracellular NAD 335 
concentrations leading to faster growth48,49. We find that genes directly under the regulation of nadR -- the 336 
nadAP operon consisting of nadA (quinolinate synthase) and pnuC (nicotinamide riboside transporter), and 337 
genes -- nadB (L-aspartate oxidase) and pncB (nicotinate phosphoribosyltransferase, were significantly 338 
upregulated in all lines. We also found enrichment of NAD pathways based on KEGG, GO (GO:0019674, 339 
GO:0009435), and PPS analysis. Interestingly, four non-operonic genes nadCDEK, which play various NAD 340 
biosynthesis roles but are not regulated by nadR, were largely unaltered (nadE was statistically significantly 341 
upregulated in 4 lines, DESeq2 q ≤ 0.01, Table S7). Concordantly, their transcriptional regulator, nac, is rarely 342 
mutated. This may suggest some sort of specificity to how NAD levels may be increased.   343 
 344 

In addition to linking the effects of specific mutations on gene expression changes in maltose and NAD 345 
regulation, we have also identified mutations that likely change the expression of genes involved in arginine 346 
biosynthesis, glyoxylate bypass system, and copper balance (Fig. S11, see supplementary methods). 347 
However, there also exist several functionally-related sets of genes, such as flagellar assembly, sulfur 348 
homeostasis, and biosynthesis of one-carbon compounds – that have parallel changes in expression levels 349 



without any obvious sets of parallel mutations linking these changes (Fig. S11). The data generated in this 350 
study will likely prove to be a rich resource for understanding the metabolic changes that occur over long 351 
periods of evolution in a simple environment such as in the LTEE, thereby adding a rich new dimension to 352 
the well-studied mutational changes and gene-expression changes described here.  353 
 354 
Discussion 355 

Adaptation to novel environments often takes unique mutational paths even when the tempo and mode 356 
of adaptation are similar across populations8,12,50–53. This is due, in part, to the fact that most genetic networks 357 
are highly redundant and that many mutations have pleiotropic effects. To bridge the gap between parallel 358 
fitness gains in a system with mostly unique genetic changes, we wanted to study gene expression – a main 359 
link between genotype and fitness. To that end, we generated RNA-seq and Ribo-seq datasets for individual 360 
clones from the ancestral strains and 11 populations evolving under a constant environment for 50,000 361 
generations in the E. coli long-term evolution experiment. Using these datasets, we have characterized the 362 
landscape of gene expression changes and elucidated several key features of the molecular mechanisms 363 
involved. First, we show that the evolved lines in the LTEE have remarkably parallel exponential phase 364 
expression profiles after 50,000 generations. Second, these changes primarily occurred at the transcriptional 365 
level, with translational changes following suit. Nonetheless, we identified signatures of global increases in 366 
translation termination rates. Third, transcriptional regulators of genes that were mutated in multiple lines had 367 
similar functional effects on their downstream targets across all lines. This indicates a strong penetrance of 368 
mutational effects to the phenotypic level even when half of the evolved lines had a hypermutable phenotype. 369 
Fourth, we show how functional consequences of mutations are consistent with adaptation in a constant 370 
environment -- genes involved in central metabolism and amino-acid biosynthesis are consistently 371 
upregulated, and genes involved in sensing environmental changes and stress responses are downregulated. 372 
 373 

Relating gene expression changes to specific mutations in LTEE is far from perfect. For many genes 374 
that are functionally related and show parallel changes in gene expression, such as the ones involved in 375 
flagellar assembly and sulfur homeostasis, we find few mutations around their coding sequences or 376 
sequences of their known transcriptional regulators. This might be due to two factors: (i) a lack of complete 377 
knowledge of gene regulatory networks underlying these functions, and (ii) parallel epigenetic changes such 378 
as changes in DNA supercoiling heterogeneities, affecting promoter activity54. Indeed, changes to DNA 379 
superhelicity occur in multiple LTEE lines55. Another key challenge in attributing expression changes to 380 
mutations is that half of the evolved lines in LTEE have a hypermutable phenotype. These genotypes have 381 
~100-fold higher mutational load than their non-mutator counterparts. It is remarkable that despite a higher 382 
mutational burden, expression patterns between mutator and non-mutator lines are highly correlated, 383 
suggesting that the bulk of the additional mutations are indeed passenger mutations13. While our current study 384 
has focused on expression patterns in the exponential phase, populations in the LTEE spend most of their 385 
time before serial transfer in the stationary phase. However, it remains unclear if we would observe a similar 386 
level of parallelism in the stationary growth phase or how similar the expression profiles might be across 387 
distinct growth phases. Taking a multi-omics approach, like the one presented above, will provide critical 388 
insights into the tradeoff between expression patterns across phases. Lab evolution experiments combined 389 
with high-throughput multi-level sequencing approaches offer a rich resource for studying the molecular 390 
mechanisms underlying complex adaptations and provide insights into the repeatability of evolution. 391 
 392 
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METHODS 404 
 405 
Bacterial cell culture, recovery, and lysis 406 

Richard Lenski generously provided clones from LTEE. Specifically, the following clones were used: 407 
Ara-1, 11330; Ara+1, 11392; Ara-2, 11333; Ara+2, 11342; Ara-3, 11364; Ara+3, 11345; Ara-4, 11336; Ara+4, 408 
11348; Ara-5, 11339; Ara+5, 11367; Ara-6, 11389; Ara+6, 11370. Clones were grown in DM25 medium 409 
(HiMedia M390) supplemented with 4 g/L glucose. Each culture was grown in 50 mL in a shaking incubator 410 
at 37 C at 125 rpm until an OD600 of 0.4-0.5 was reached. Cells were recovered via vacuum filtration and 411 
immediately frozen in liquid nitrogen (LN2). Frozen pellets were stored at -80 C until lysis. For lysis, a mortar 412 
and pestle were chilled to cryogenic temperatures with LN2. The pellet was ground to a powder while 413 
submerged in LN2. Once pulverized, 650 uL of lysis buffer was added to each sample and ground further. 414 
Lysis buffer contained the following: 20 mM Tris pH 8, 10 mM MgCl2, 100 mM NH4Cl, 5 mM CaCl2, 1 mM 415 
chloramphenicol, 0.1% v/v sodium deoxycholate, 0.4% v/v Triton X-100, 100 U/mL DNase I, 1 uL/mL 416 
SUPERase-In (Thermo Fisher Scientific AM2694). The frozen lysate was allowed to thaw until liquid, then 417 
incubated for 10 min on ice to allow complete lysis. Afterward, the lysate was centrifuged at 20,000g for 10 418 
minutes at 4 C, and the supernatant recovered and transferred to a new tube. Each sample was split into two 419 
for RNA-seq and Ribo-seq libraries.  420 
 421 
RNA-seq library preparation 422 

Lysate destined for RNA-seq libraries was subjected to total RNA extraction using the Trizol method 423 
(Thermo Fisher Scientific 15596026) as per the manufacturer's instructions. RNA was quantified using UV 424 
spectrophotometry. We used the ERCC RNA Spike-In Mix (Thermo Fisher Scientific 4456740) in library 425 
preparation. For RNA-seq libraries, 3 uL of a 1:100 dilution of the set 1 oligos was added to the first replicate 426 
and 4 uL to the second replicate. The spike-ins were added directly to the lysate destined for RNA-seq before 427 
Trizol based RNA extraction. 2 ug of RNA with ERCC controls were subjected to fragmentation in a buffer 428 
containing final concentrations of 1 mM EDTA, 6 mM Na2CO3, and 44 mM NaHCO3 in a 10 uL reaction volume 429 
for 15 minutes at 95 C. 5 uL of loading buffer (final concentrations of 32% v/v formamide, 3.3 mM EDTA, 100 430 
ug/mL bromophenol blue) was added to each sample, and the resulting 15 uL mixture was separated by gel 431 
electrophoresis with a 15% polyacrylamide TBE-urea gel (Invitrogen EC68852BOX) at 200 V for 30 minutes. 432 
Gels were stained for 3 minutes with SYBR Gold (Thermo Fisher Scientific S11494), and the region 433 
corresponding to the 18-50 nucleotide sized fragments excised. We excised this region so that we would have 434 
similarly sized fragments for both RNA-seq and Ribo-seq libraries. RNA was recovered from the extracted 435 
fragments by adding 400 uL a buffer containing 300 mM sodium acetate, 1 mM EDTA, and .25% w/v SDS, 436 
and freezing the samples on dry ice for 30 minutes. Then, samples were incubated overnight on a shaker at 437 
22 C. 1.5 uL of GlycoBlue (Thermo Fisher Scientific AM9515) was added as a co-precipitant, followed by 500 438 
uL of 100% isopropanol. The samples were chilled on ice for 1 hour then centrifuged for 30 minutes at 20,000g 439 
at 4 C. The supernatant was removed, and the pellet was allowed to air dry for 10 minutes. The pellet was 440 
resuspended in 5 uL of water, and 1 uL was used to check RNA concentration via UV spectrophotometry.  441 
 442 
Ribo-seq library preparation 443 

Lysate destined for Ribo-seq was incubated with 1500 units of micrococcal nuclease (Roche 444 
10107921001) and 6 uL of SUPERase-In at 25 C for 1 hour and shaken at 1400 rpm. 2 uL of .5 M EGTA pH 445 
8 was added to quench the reaction, which was then placed on ice. The reaction was centrifuged over a 446 
900uL sucrose cushion (final concentrations of 20 mM Tris pH 8, 10 mM MgCl2, 100 mM NH4Cl, 1 mM 447 



chloramphenicol, 2 mM DTT, .9 M sucrose, 20 U/mL SUPERase-In) using a Beckman Coulter TLA100 rotor 448 
at 70,000 rpm at 4 C for 2 hours in a 13 mm x 51 mm polycarbonate ultracentrifuge tube (Beckman Coulter 449 
349622). The sucrose solution was removed from the tube, and the pellet resuspended in 300 uL of Trizol, 450 
mixed by vortexing, and RNA was extracted according to the manufacturer's protocol. Samples were then 451 
separated by gel electrophoresis and purified in the same manner as for RNA-seq.  452 
 453 
Unified library preparation 454 

Once fragments were obtained from RNA-seq and Ribo-seq samples, they could be subject to a 455 
unified library preparation protocol. In total, 8 pooled libraries were prepared, with each library consisting of a 456 
single replicate of 6 Ara+  or 6 Ara- clones of one sequencing type. For example, one library would consist of 457 
replicate 1 of Ara- 1-6 for RNA-seq, and another would consist of the second replicate. The final library 458 
structure was 5' adapter - 4 random bases - insert - 5 random bases - sample barcode - 3' adapter. The 459 
randomized bases function as UMIs for deduplication. 460 
 461 

3' dephosphorylation was performed by incubating fragments with 10 U/uL T4 Polynucleotide Kinase 462 
(New England Biolabs M0201S) in the supplied buffer (NEB B0201S) along with SUPERase-In for 1 hour at 463 
37 C in a reaction volume of 5 uL. 464 
 465 

Linker ligation took place by adding the following reagents to the above reaction to the indicated final 466 
concentrations: 17% w/v PEG-8000, 200 U/uL of T4 RNA Ligase 2 (NEB M0351S), 1X T4 RNA Ligase 467 
Reaction Buffer (NEB B0216L), and 20 uM pre-adenylated linkers. The reaction volume totaled 10 uL, and 468 
was incubated for 3 hours at 22 C. Afterwards, 10 U/uL of 5' deadenylase (NEB M0331S), 10 U/uL Rec J 469 
exonuclease (Epicentre RJ411250), and the included buffer were added and incubated at 30 C for 45 minutes. 470 
 471 

RNA was purified using a Zymo Research Oligo Clean & Concentrator Kit (Zymo, D4060), and then 472 
rRNA depleted using the Illumina Ribo-Zero rRNA Depletion Kit for bacteria, both steps being performed 473 
according to the manufacturer's instructions.  474 
 475 

5' phosphorylation was performed by mixing 6 uL of rRNA depleted RNA with 1 uL of 10X PNK buffer 476 
(NEB B0201S), 1 uL of PNK enzyme (NEB M0236S), and 2 uL of 1mM ATP to total 10 uL and incubated at 477 
37 C for 30 minutes followed by inactivation by heating to 65 C for 20 minutes.  478 
 479 

Hybridization with the reverse transcription primers was performed by adding 1 uL of SR RT Primer 480 
(NEB E7333A) to the above reaction and incubating at 75 C for 5 minutes, 37 C for 15 minutes, and 25 C for 481 
15 minutes. 482 
 483 

5' adapter ligation was performed by adding 3 uL of 10uM 5' adaptor (which was previously denatured 484 
by heating to 70 C for 2 minutes and placed on ice, NEB E7330L), 2 uL of 10X T4 RNA ligation buffer (NEB 485 
B0216L), 2 uL of 10mM ATP, 2 uL of T4 RNA ligase I (NEB M0204S) totaling 20 uL and incubated for 1 hour 486 
at 30 C. 487 
 488 

Reverse transcription was performed by adding the following to the above reaction: 8 uL of 5x first 489 
strand buffer (NEB E7330L), 2 uL of 10mM dNTPs (each), 4 uL of 10X DTT (Invitrogen something), 2 uL of 490 
SUPERase-In, 2uL of SuperScript II (NEB M0368L), and 2 uL of water, totaling 40 uL and incubated at 50 C 491 
for 1 hour then inactivated by heating to 70 C for 15 minutes. 492 
 493 

PCR amplification of the above reaction was performed by taking 150 ng of cDNA template and adding 494 
10 uL 5X Phusion HF buffer (Thermo Fisher Scientific F518L), 1uL 10 mM dNTPs (each), 1.25 uL 10uM SR 495 
primer (from NEB E7330L), 1.25 uL 10uM index 3 primers, .5 uL of Phusion polymerase (NEB M0530S), and 496 



enough to water to total the reaction volume at 50 uL. This was cycled as follows in a thermocycler: 30 sec at 497 
90 C; 14 cycles of 15 sec at 94 C, 30 sec at 62 C, 15 sec at 70 C; 5 min at 70 C. 498 
 499 

PCR products were separated by gel electrophoresis on a 6% polyacrylamide gel at 120 V for 45 500 
minutes. The region corresponding to the expected product size was excised and purified from the gel by 501 
soaking the resected pieces in 250 ul DNA gel elution buffer (NEB E7324A) at 22 C and 200 rpm overnight 502 
on a rotator and transferring the solution to a gel filtration spin column (Corning 8160) and centrifuging for 2 503 
minutes at 16,000g. 1.5 uL of GlycoBlue, 25 uL of 3M sodium acetate pH 5.5, and 750 uL of 100% ethanol 504 
were added, and the solution was held on ice for 2 hours, then centrifuged at 20,000g at 4 C for 30 minutes. 505 
The supernatant was removed, and the pellet washed with 75 % ethanol and again centrifuged at 20,000g at 506 
4 C for 5 minutes. The pellet was allowed to air dry and resuspended with 11 uL of water. 1 uL was used to 507 
check concentration via UV spectrophotometry. The completed libraries were sequenced on Illumina NextSeq 508 
in 75 bp single-end mode. 509 
 510 
ERCC spike-in controls and modeling 511 

ERCC RNA Spike-In Mix (Thermo Fisher Scientific 4456740) was used in library preparation. For 512 
RNA-seq libraries, 3 uL of a 1:100 dilution of the set 1 oligos was added to the first replicate and 4 uL to the 513 
second replicate. The spike-ins were added directly to the lysate destined for RNA-seq before Trizol based 514 
RNA extraction. The file "absolute_counts.Rmd" contains the code for the linear modeling using the ERCC 515 
data.  516 
 517 
CFU determination 518 

Before recovery, 1mL of culture was extracted for CFU determination. LB agar plates were used for 519 
colony growth. We performed a dilution series of that 1mL culture from 1:10 to 1:1e6 in increments of 10. 520 
100uL of each dilution was spread on a plate and incubated overnight at 37C. We determined CFU counts 521 
manually from the most appropriate dilution for each culture, usually between 1:1e3 and 1:1e6 dilutions.  522 
 523 
Optical microscopy 524 
(i) Media and growth conditions 525 
Liquid cultures were grown at 37 °C with aeration, unless otherwise indicated, in DM25 liquid medium (Davis 526 
minimal broth supplemented with glucose at a concentration of 25 mg per L10).  527 
 528 
(ii) Microscopy 529 
Prior to each experiment, clones were grown in liquid cultures in DM25 medium overnight at 37 °C with 530 
aeration. OD600 of the cultures were ∼0.1–0.3. Microscope slides were prepared with 1% agarose pads, and 531 
cells were imaged by microscopy. Phase-contrast microscopy was performed using an Olympus IX81 532 
microscope with a 100-W mercury lamp and 100× NA 1.35 objective lens. 16-bit images were acquired with 533 
a SensiCam QE cooled charge-coupled device camera (Cooke Corp.) and IPLab version 3.7 software 534 
(Scanalytics) with 2 × 2 binning. Average cell lengths were determined from phase contrast images using 535 
ImageJ56 and the MicrobeJ plugin57.  536 
 537 
Sequencing data processing 538 
Sequencing data are deposited here - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164308. 539 
Code for all data processing and subsequent analysis can be found in a series of R markdown documents 540 
here – (https://github.com/shahlab/LTEE-gene-expression). The file titled "data_processing.Rmd" contains 541 
the code for processing of the raw sequencing data. We processed 8 raw data files. We used Cutadapt58 to 542 
remove adapters and retained only reads that had successful trimming. We then used the dedupe.sh script 543 
from the BBtools suite to remove PCR duplicates. Files were demultiplexed using the FASTX-Toolkit 544 
barcode splitter script. After demultiplexing, barcodes and the randomized adapters were removed using 545 



cutadapt. The 4 nucleotide UMIs were removed from the 5' end of a read and 10 nucleotides from the 3' end 546 
(5 UMI + 5 barcode). Only reads longer than 24 nucleotides after trimming were retained. 547 
 548 
Alignment 549 
 550 
Differential expression 551 

Code for this section can be found in the file titled "DEseq2.Rmd". We used DEseq230 with the 552 
"apeglm" normalization59 for differential expression. In estimating fold-changes, we compared the 4 replicates 553 
of the ancestors (2 each from ancestors of Ara+ and Ara-) to 2 replicates of each of the evolved lines. Because 554 
some genes in some lines contained indels or were deleted entirely, some transcripts were missing from the 555 
transcriptome fastas used to create indices for alignment. We added these genes back to Kallisto's counts 556 
with estimated counts of 0 and assigned them fold-changes of NA. Count matrices containing identical 557 
complements of transcripts were used in the differential expression analysis for each line, such that all evolved 558 
lines had the same complement of genes as the ancestors.    559 
 560 
Change in ribosomal density analysis 561 

We used Riborex34 to analyze changes in ribosomal density. The same count matrices used for 562 
DEseq2 were used here, and comparisons were made in the same manner of 4 ancestral samples (2 lines, 563 
2 replicate each) to 2 evolved clones (1 line, 2 replicates). The code for this section can be found in the file 564 
"riborex.Rmd" 565 
 566 
Codon specific positioning of Ribo-seq data 567 

Code for this section can be found in the file "codon_specific_densities.Rmd". We used hisat260 to 568 
align our Ribo-seq data to each clone's unique genome and marked the A site position of a read using a fixed 569 
offset of 37nt from the 3' end of a read. It has been shown that mapping bacterial Ribo-seq reads by their 3' 570 
ends is more accurate than 5' mapping61. We then calculated genome-wide ribosome density at each codon 571 
using only genes that had at least 100 reads. The distributions of read counts per gene can be seen in figure 572 
S1C. Only bacterial protein-coding genes (not tRNA or insertional element genes) were considered. To 573 
calculate ribosome densities on a codon for a gene, the number of reads mapping to a codon was normalized 574 
to the total number of reads mapping to that gene in a replicate and line-specific manner. Genome-wide codon 575 
density is calculated by taking genes with at least 100 reads mapping to them and taking the average number 576 
of normalized reads mapping to each codon across that set of genes as the genome-wide codon density. 577 
 578 
Functional analysis 579 

We used three different functional analysis methods – GO (using the R package topGO), KEGG (using 580 
the R package clusterprofiler62, and PPS44. The code for each of these analyses can be found in the Rmd 581 
files named "go. Rmd", "kegg_analysis.Rmd", and "manual_PPS.Rmd," respectively. We used a manual 582 
implementation of the Biocyc PPS score because the website was not capable of high throughput analysis. 583 
Briefly, each pathway is composed of at least one reaction, and each reaction is completed by at least one 584 
enzyme. First, a reaction perturbation score is calculated for each reaction in a pathway. It is defined as the 585 
absolute value of the largest fold-change of an enzyme associated with that reaction. To calculate PPS, for a 586 
pathway having N reactions,  PPS = sqrt((Σ RPS2) / N). 587 
 588 
SUPPLEMENTAL ANALYSIS 589 
 590 
Cell size and filamentation  591 

Evolved lines form filaments more frequently and form longer filaments compared to the ancestor. 592 
This is supported by the fact that all evolved lines except Ara+1 had significantly longer cells compared to the 593 
ancestor (Welch's t-test, p<.0001 for all lines) (Fig. S2A). Additionally, volume and aspect ratio are positively 594 



correlated in all lines (0.53 ≤ R ≤ 0.94). Length and volume was positively correlated (0.76 ≤ R ≤ 0.95), but 595 
width and volume showed a low correlation (0.12 ≤ R ≤ 0.45) (Fig. S2C). Taken together, increases in the 596 
volume to large values are due to increases in one dimension, length, suggesting increased filamentation. 597 
We designated cells that are greater than three times the median volume of a given line as filaments. Even 598 
after removing filaments from the comparisons, each evolved line was still larger in volume than the ancestor 599 
(Fig. S2B). Removal of filaments did not alter the relationship between the median volume and RNAs per 600 
CFU (Fig. S2D). 601 
 602 
CFU counts 603 

One caveat to the relationship between CFU counts and RNA abundance is that the CFU counts may 604 
be misleading, especially in light of the increased filamentation suggested by our microscopy data. Because 605 
a single chain of bacteria composed of multiple cells could be the source of a single colony, the CFUs may 606 
be an underestimate of the number of cells that had gone into the preparation of each of the evolved lines 607 
libraries. If this was the case, it might contribute to the observed results. 608 
 609 
GO analysis 610 

We also performed GO searches in all three ontologies, Cellular compartment (CC), Biological process 611 
(BP), and Molecular function (MF). The top 5 up and downregulated terms for each ontology can be seen in 612 
Fig. S11, and the complete results can be found in Supplementary Table S13. These searches found results 613 
similar to the KEGG and PPS results. For example, terms related to the flagellar apparatus (BP, GO:0044780, 614 
GO:0044781, GO:0071978, GO:0097588, GO:0071973, GO:0001539; CC, GO:0009288 GO:0009424, 615 
GO:0044461), polysaccharide transport (BP, GO:0015774, GO:0033037), specifically, maltodextrin transport 616 
(BP, GO:0042956), arginine biosynthesis (BP: GO:0006526), and others reach statistical significance 617 
(Fisher's exact test, p ≤ 0.05) in many of the lines. Other terms related to iron were also found to be enriched 618 
and many genes related to iron transport or incorporation into organic molecules were found to have 619 
significant fold-changes in the DESeq2 results (data not shown, see table S7 for complete DESeq2 results).  620 

 621 
Analysis of altered pathways 622 

Flagella are used for bacterial motility and allow bacteria to move to new environments by swimming. 623 
Previous experiments in the LTEE have shown the downregulation of flagellar apparatus genes in Ara+1 and 624 
Ara-1 at 20,000 generations, though the exact source of these downregulations was not determined16. We 625 
find that genes related to the flagellar apparatus are significantly downregulated in 10 of the 11 lines 626 
considered here (Fig. S11A). The flgBCDEFGHIJK, flgAMN, and flhABE operons are significantly 627 
downregulated in all but Ara-6, where only some of these genes were downregulated. These operons 628 
contribute various proteins to the flagellar apparatus and are regulated in part by the transcription factors flhC 629 
and flhD, which have complicated regulation dictated by various environmental factors63. flhC and flhD are 630 
downregulated in 3 of the evolved lines but mostly unaltered in the others. These genes are rarely mutated in 631 
the clones used in this study (Fig. S11A, bottom). The fitness benefits of downregulation to the flagellar 632 
apparatus may be multifaceted. The flagellar apparatus is an expensive piece of machinery to produce, and 633 
it requires energy to move. Other E. coli evolution studies have shown that mutations in flagellar genes are 634 
common and provide a fitness advantage64. Additionally, the E. coli B strain is thought to be non-motile65. 635 
Taken together, the downregulation of flagella may simply be the removal of an unused system. Surprisingly,  636 
the lack of parallel changes in transcriptional regulators flhCD indicates that it is unlikely that transcriptional 637 
changes are the primary mode for downregulation of the flagellar protein operons.  638 

 639 
Amino acids are the building blocks for proteins, and translation of new proteins is required for cellular 640 

growth. Hence, increased levels of intracellular amino acids would allow faster translation of proteins and 641 
faster growth. Terms involving amino acid biosynthesis showed up frequently in all three methods used for 642 
functional analysis (KEGG, GO, and PPS). Arginine biosynthesis (KEGG and GO:0006526) was a frequently 643 



upregulated category. We find that genes related to arginine biosynthesis were upregulated in 8 out of 11 644 
lines (Fig. S11B). These genes are partly controlled by the argR repressor, which represses their transcription 645 
when L-arginine is abundant66. 5 out of 10 lines had mutations to the argR coding sequence, and other lines 646 
had mutations occurring nearby. Interestingly, we find that expression levels of argR remain unchanged in all 647 
lines indicating that these mutations may have disabled argR function, causing de-repression of its 648 
downstream targets.  649 
 650 

The glyoxylate bypass system allows E. coli to utilize acetate as a carbon source, is composed of the 651 
aceBAK operon, and regulated by iclR and arcAB67. Acetate is a metabolic by-product but can be returned to 652 
central carbon metabolism for biosynthetic reactions by this system. Previous studies have shown that 653 
mutations in iclR and arcB cause depression of their target genes are beneficial in the LTEE68. Consistent 654 
with these results, we found that the aceBAK operon was upregulated in 9 of 11 evolved lines (Fig. S11C).  655 

 656 
Copper and silver have antibacterial properties69, and bacteria have evolved systems to mitigate 657 

toxicity from these elements. The cusCFBA operon, regulated by the cusRS sensor kinase, codes for proteins 658 
that transport copper and silver ions out of the cell70. Additionally, the cytoplasmic copper chaperone copA, 659 
regulated by cueR71, and cueO (multicopper oxidase72) regulate copper homeostasis in the cell. These genes 660 
contained deletions 5 of our clones and were downregulated in 3 of the 6 lines where they remained (Fig. 661 
S11D). Overall, 8 of the 11 lines surveyed here had defects in these systems. This suggests that there may 662 
be the selection for removal or downregulation of these genes. In contrast to natural environments, the 663 
laboratory environment is likely free of copper and silver, rendering these systems dispensable.  664 

 665 
Sulfur is a critical component of many biological molecules, like amino acids, and participates in 666 

creating other structures like iron-sulfur cluster proteins. Organic sulfur is transported across the cell 667 
membrane by proteins from the cysPUWAM operon, which encodes for a sulfate/thiosulfate importer73, the 668 
gsiABCD operon which encodes for a glutathione importer74, the tauABCD operon which codes for a taurine 669 
importer75, and tcyP, the major L-cysteine importer76. We found that many of these genes were downregulated 670 
in many of the lines (Fig. S11E). The cysB gene positively regulates these genes and was downregulated in 671 
most lines. This gene contained few mutations across the lines. The sources of organic sulfur in the medium 672 
used in the LTEE are ammonium and magnesium sulfate, for which the cysPUWAM operon functions as the 673 
importer. The mechanism and reasons for alterations to these operons remain unclear. The amount of organic 674 
sulfur in the medium may be sufficient to allow the downregulation of sulfur transport systems without 675 
impacting downstream pathways that require sulfur.  676 

 677 
Glycine plays a role in protein construction and can serve as a building block for other metabolic 678 

pathways such as one-carbon metabolism or serine synthesis67,77. We found that the gcvTHP operon, which 679 
encodes for proteins in the glycine cleavage system, were upregulated in 6 of the 11 lines. Increases in the 680 
levels of compounds involved in this set of reactions directly may increase the growth rate. Though there are 681 
some mutations in and around transcriptional regulators of these genes, their effects are unclear. Whether 682 
changes to these genes are due to changes in their transcription factors or other changes, the upregulation 683 
of these genes in many lines suggests that it may be beneficial. 684 
  685 



 686 
Supplemental tables 687 
 688 
A description of the supplemental tables: 689 
 690 
Table S1: The file "table_s1_read_counts.csv" contains quantification of read counts per gene based on 691 
Kallisto for each sample. Counts in this file were rounded, and new TPMs were calculated based on rounded 692 
counts. This file was generated using "data_cleaning.Rmd". 693 
Table S2: The file "table_s2_three_nt_periodicity.csv" contains the data needed to show periodicity in the 694 
Ribo-seq data. This file was generated using "3nt_periodicty.Rmd". 695 
Table S3:  The file "table_s3_cell_size.csv" contains cell size data derived from phase-contrast microscopy.  696 
Table S4: The file "table_s4_colony_counts.csv" contains information about colony forming units for each of 697 
the samples. 698 
Table S5: The file "table_s5_ercc_molecules_per_sample.csv" contains information about the use of ERCC 699 
controls in each sample and the counts/TPMs of each control in each sample. 700 
Table S6: The file "table_s6_mRNAs_per_cfu.csv" shows the absolute counts of mRNAs per CFU for each 701 
gene in each sample. This file was generated using "absolute_counts.Rmd".  702 
Table S7: The file "table_s7_fold-changes.csv" contains the results of gene-expression fold-changes based 703 
on DESeq2 analysis. This file was generated using "DEseq2.Rmd". 704 
Table S8: The file "table_s8_mutations.csv" contains data on mutations accumulating in LTEE and was 705 
derived from Good et al. 2017 and downloaded from https://barricklab.org/shiny/LTEE-Ecoli/. 706 
Table S9: The file "table_s9_riborex_results.csv" contains the results of differential ribosome-density analysis 707 
using Riborex. This file was generated using "riborex.Rmd". 708 
Table S10: The file "table_s10_genome_wide_codon_densities.csv" contains the genome-wide codon-709 
specific ribosome-densities. This file was generated using "codon_specific_densities.Rmd". 710 
Table S11:  The file "table_s11_kegg_results.csv" shows the results of KEGG enrichment analyses. This file 711 
was generated using "kegg_analysis.Rmd" 712 
Table S12: The file "table_s12_pps_scores" shows the PPS scores analyses. This file was generated using 713 
"manual_PPS.Rmd." 714 
Table S13: The file "table_s13_go_results.csv" shows the results of GO enrichment analyses. This file was 715 
generated using "go.Rmd".  716 
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 882 

 883 

Figure S1: Summary of sequencing data. A. The average number of reads aligned per protein-coding gene 884 
by Kallisto for each sample. The color scheme remains the same for the other panels. B. The periodicity of 885 
the ribo-seq datasets is determined using a fast Fourier transform (see methods). C. Distributions of reads 886 
per protein-coding gene in each sample.  887 



 888 

Figure S2: A. Length distributions of cells as determined by phase contrast microscopy. The dotted line 889 
indicates the median of ancestral strain, and the numbers beneath the line names indicate the number of 890 
cells imaged. p-values indicate the results of a t-test when each line is compared to the ancestor. **** p ≤ 891 
.0001, *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, ns = not significant. B. Distributions of cell volume with 892 
filamentous cells removed (cells with a volume larger than 3x the median for that line). C. Increase in 893 
volume is more strongly correlated with cell length compared to cell width. Each dot represents one cell. D. 894 
Relationship between the median volume with filaments removed and the total number of molecules of RNA 895 
per CFU. E. Correlation between total RNA per CFU for each replicate of each line. F. Correlation between 896 
the median cell volumes as determined in this work and cell volumes determined in Grant et al. 2020, figure 897 
5. Error bars indicate the 25th and 75th quantiles of our data.   898 



 899 
Figure S3: Representative phase contrast images of each of the 900 
lines used in this study. Scale bar is 3um. 901 
 902 
 903 



 904 

Figure S4: A. Spike-in RNA control abundances are correlated with their estimates in sequencing data. Linear 905 
models relating the number of molecules of each ERCC control sequence added to their RNA-seq TPM 906 
(transcripts per million) in all RNA-seq samples. B. Most genes have a higher absolute expression in evolved 907 
lines. Changes in the absolute number of mRNA molecules per CFU (colony forming unit) in the 50,000th 908 
generation of each line relative to the ancestor. The values plotted are the average between 2 replicates of 909 
the evolved lines and both replicates from both ancestors. REL606 and REL607 are ancestral strains.  910 



 911 

Figure S5: A. Pairwise correlations between expression levels of genes across lines based on log10(TPM). 912 
The upper triangle shows RNA-seq data, and the lower triangle indicates Ribo-seq data. B. Distributions of 913 
pairwise correlations between evolved lines and ancestors (purple) and amongst evolved lines (orange). C. 914 
Distributions of all DESeq2 fold-changes for both sequencing methods for all lines. The left panel is a zoom 915 
of the right panel.  916 



917 
Figure S6: A. Parallelism in expression changes across evolved lines. The fold-changes of top 100 down and 918 
upregulated genes in each of the lines in the Ribo-seq datasets. Genes are ordered from left to right in order 919 
of increasing mean fold-change across evolved lines. Gray bars represent gene deletions. B. Downregulated 920 
genes have larger effect sizes than upregulated genes. Distribution of statistically significant fold-changes in 921 
Ribo-seq data in each line. Statistical significance was based on DESeq2 results using q ≤ 0.01. C. The 922 
number of significantly down and upregulated genes in each line. D. Pairwise correlations of evolved lines 923 
based on all (yellow curve) or statistically significant (blue curve) Ribo-seq fold-changes. Each of these curves 924 
is significantly different from a distribution based on correlations made after randomizing the fold-changes 925 
(grey curve) within each line (p ≤ 0.01, t-test). E. Pairwise-correlations between fold-changes in expression 926 
levels of genes based on their mutator status. F. Fold-changes in expression levels of genes in evolved lines 927 
scale negatively with their ancestral expression levels. The relationship between ancestral TPM in both RNA- 928 
and Ribo-seq datasets corresponding fold-changes across all lines. The black dots represent all the points 929 



(all genes), and the red dots represent significantly altered genes. G. Genes with high ancestral expression 930 
are typically downregulated. The panel shows the proportion of differentially expressed genes that are 931 
up/down-regulated as a function of ancestral expression (TPM).   932 



 933 

Figure S7: A. The number of evolved lines in which a gene's expression level was significantly altered (q ≤ 934 
0.01) was based on the DESeq2 results for the Ribo-seq dataset. B. Frequency downregulated genes have 935 
larger effect sizes than upregulated genes. Distributions of the Ribo-seq fold-changes for the genes. C. 936 
Frequently altered genes are typically downregulated. The proportion of up and downregulation of genes in 937 
the Ribo-seq dataset as a function of their frequency of expression changes across lines.  938 
  939 



 940 

Figure S8: A. Translational changes are positively correlated with transcriptional changes. The relationship 941 
between RNA-seq and Ribo-seq TPM across all evolved lines. The TPMs are averaged between the 942 
replicates. B. Fold-changes in expression levels of genes involved in proline biosynthesis. C. Fold-changes 943 
in expression levels of translation termination factors and related genes. 944 
  945 



 946 

 947 

Figure S9: A. Parallel changes in functional categories. KEGG enrichment scores from the Ribo-seq data. 948 
Enrichment score represents the degree to which a pathway was up (positive) or downregulated (negative). 949 
Functional categories are ordered by increasing mean enrichment score across the lines. Enrichment score 950 
represents the degree to which a pathway was up (positive) or downregulated (negative). B. Pathway 951 
perturbation score (PPS) calculated from Ribo-seq fold changes. Higher PPS indicates larger degrees of 952 
alteration but does not indicate directionality. C. Pairwise correlations of KEGG enrichment scores for all 953 
pathways that were significantly altered in at least one line. D. Distribution of PPS scores in both RNA-seq 954 
and Ribo-seq datasets across all lines.  955 



 956 

Figure S10: The top 5 up and downregulated GO categories for each ontology term. For each ontology, only 957 
terms with a p-value ≤ 0.01 based on Fisher's exact test in at least 4 lines were considered. White spaces 958 
indicate that a particular category was not significantly altered in a line. 959 
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 961 

Figure S11: A-F. Mutations in transcriptional regulators lead to parallel changes in gene expression (RNA-962 
seq). Gene names in each category are colored based on their operon membership. Transcription factors for 963 
each class of genes are underlined. Asterisks indicate statistical significance of fold-changes, ** q ≤ 0.01, * q 964 
≤ 0.05. Grey panels in the heatmap indicate gene deletion. Lower panels show the type and location of 965 
mutations in each transcription factor.  966 
 967 
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