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The phenotypic effect of an allele at one genetic site may depend on
alleles at other sites, a phenomenon known as epistasis. Epistasis
can profoundly influence the process of evolution in populations
and shape the patterns of protein divergence across species.
Whereas epistasis between adaptive substitutions has been studied
extensively, relatively little is known about epistasis under purifying
selection. Here we use computational models of thermodynamic
stability in a ligand-binding protein to explore the structure of
epistasis in simulations of protein sequence evolution. Even though
the predicted effects on stability of random mutations are almost
completely additive, themutations that fix under purifying selection
are enriched for epistasis. In particular, the mutations that fix are
contingent on previous substitutions: Although nearly neutral at
their time of fixation, these mutations would be deleterious in the
absence of preceding substitutions. Conversely, substitutions under
purifying selection are subsequently entrenched by epistasis with
later substitutions: They become increasingly deleterious to revert
over time. Our results imply that, even under purifying selection,
protein sequence evolution is often contingent on history and so it
cannot be predicted by the phenotypic effects of mutations assayed
in the ancestral background.
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Whether a heritable mutation is advantageous or deleterious
to an organism often depends on the evolutionary history

of the population. A mutation that is beneficial at the time of its
introduction may confer its beneficial effect only in the presence
of other potentiating or permissive mutations (1–9). Thus, the
fate of a mutation arising in a population may be contingent on
previous mutations (10–13). Conversely, once a mutation has fixed
in a population, the mutation becomes part of the genetic back-
ground onto which subsequent modifications are introduced. Be-
cause the beneficial effects of the subsequent modifications may
depend on the focal mutation, as time passes reversion of the focal
mutation may become increasingly deleterious, leading to a type
of evolutionary conservatism, or entrenchment (14–18).
In the context of protein evolution, the effects of contingency

and entrenchment are most easily studied by considering a se-
quence of single amino acid changes (19) that extends both forward
and backward in time from some focal substitution. To assess the
roles of contingency and entrenchment we can study the degree to
which each focal substitution was facilitated by previous sub-
stitutions, and the degree to which the focal substitution influences
the subsequent course of evolution (Fig. 1A).
Dependencies within a sequence of substitutions are closely

connected to the concept of epistasis—that is, the idea that the
phenotypic effect of a mutation at a particular genetic site may
depend on the genetic background in which it arises (20–24). In
the absence of epistasis, a mutation has the same effect regardless
of its context and therefore regardless of any prior history or
subsequent evolution. By contrast, in the presence of epistasis,
each substitution may be contingent on the entire prior history of
the protein, and it may constrain all subsequent evolution.
The potential for epistasis to play an important role in evo-

lution, including protein evolution, has not been overlooked by
researchers (1, 8, 25–34), nor have the concepts of contingency

(3, 4, 9, 12, 35–38) and, more recently, entrenchment (18, 39,
40). However, most studies have addressed the role of epistasis
in the context of adaptive evolution (1–9, 27, 30, 31, 36, 38),
whereas the consequences of epistasis under purifying selection
have received less attention (18, 41–44). Indeed, although some
more sophisticated models have been proposed (e.g., refs. 45–
50), all commonly used phylogenetic models of long-term pro-
tein evolution assume that epistasis is absent so that sites evolve
independently (51–56).
Here we explore the relationships between epistasis, contin-

gency, and entrenchment under long-term purifying selection on
protein stability. Our analysis combines computational models
for protein structures with population-genetic models for evo-
lutionary dynamics. We use a force-field-based model, FoldX
(57), to characterize the effects of point mutations on a protein’s
stability and fitness. This approach allows us to simulate evolu-
tionary trajectories of protein sequences under purifying selec-
tion, by the sequential fixation of nearly neutral mutations. We
can then dissect the epistatic relationships between these sub-
stitutions by systematically inserting or reverting particular sub-
stitutions at various time points along the evolutionary trajectory.
Our analysis considers epistasis both at the level of protein

stability and at the level of fitness. Whereas empirical studies in
diverse proteins have demonstrated that the stability effects of
point mutations are typically additive across sites (58, 59), in this
study we are specifically interested in epistasis for stability among
the mutations that fix during evolution. Even if most random
mutations are virtually additive in their effects on stability, the
mutations that fix under purifying selection are highly nonrandom,
and so there is reason to suspect that epistasis for stability may be
enriched among such mutations. Moreover, because the mapping
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from stability to fitness is itself nonlinear (18, 26, 60, 61) and
because selection is sensitive to selection coefficients as small as
the inverse of the population size (62), even slight variation in the
stability effects of mutations across different genetic backgrounds
may be sufficient to influence the course of evolution.
Using the computational approach summarized above, we will

demonstrate that the nearly neutral mutations that fix under pu-
rifying selection are, indeed, often epistatic with each other for
both stability and fitness. In particular, we find that each mutation
that fixes is typically permitted to fix by the presence of preceding
substitutions—that is, most substitutions would be too deleterious
to fix were it not for epistasis with preceding substitutions.
Conversely, we also find that mutations that fix typically become
entrenched over time by epistasis—so that a substitution that was
nearly neutral when it fixed becomes increasingly deleterious to
revert as subsequent substitutions accumulate (18, 39). These re-
sults imply an important role for epistasis in shaping the course
of sequence evolution in a protein under selection to maintain
thermodynamic stability.

Model
Evolutionary Model. We explore the evolution of a protein se-
quence in the weak-mutation regime, so that each new mutation
introduced into the population either is lost or goes to fixation,
with probabilities that depend upon the mutant’s fitness, before

another mutation is introduced (see ref. 63 for a review). Fixation
or loss are considered instantaneous so that the population is al-
ways monomorphic for a particular protein sequence. We study
the 238-aa lysine-arginine-ornithine-binding periplasmic protein
(argT) from Salmonella typhimurium as a model system, chosen
because its crystal structure is known (1LAF) and is simple enough
that computational predictions for the stability effects of muta-
tions are feasible. We estimate the stability of each proposed
mutant sequence using the force-field approach FoldX. We first
use the RepairPDB function of FoldX to iteratively remove bad
torsion angles and van der Waals clashes, and we then use the
BuildModel function to compute stabilities of mutants.
The relevance of our study to protein evolution in nature is in-

trinsically limited by the accuracy of FoldX in computing the sta-
bility effects of mutations. Force-field methods such as FoldX
provide only modest accuracy in predicting the effects of specific
mutations (64, 65), in part because they approximate multibody
interactions by sums of pairwise interactions. Nevertheless, the sta-
bility effects of randommutations to the argT sequence, as predicted
by FoldX, are almost entirely additive (discussed below), in accor-
dance with experimental data (58, 59), and they are also influenced
by the native 3D structure (SI Appendix). Furthermore, we will
compare the magnitude of epistasis observed in our evolutionary
simulations using FoldX to empirical data on variation in the sta-
bility effects of mutations across different genetic backgrounds.
Although most studies of protein evolution assume that desta-

bilizing mutations decrease protein activity and fitness, the effects
of overstabilizing mutations remain unclear. For most of the re-
sults presented in the main text, we model purifying selection on
protein stability by assuming a Gaussian fitness function centered
around the ΔG of the wild-type argT sequence (Fig. 1B), so that
both destabilizing and overstabilizing mutations produce variants
with lower fitness than the wild type. This assumption is consistent
with empirical measurements on several families of proteins (66–
69). In addition, we consider an alternative, semi-Gaussian fitness
function that penalizes only destabilizing mutations (discussed
below). We assume an effective population size of Ne = 104 for the
purpose of computing the fixation probabilities of mutants. The
SD of the fitness function is fixed at 37.75 ΔG kcal=mol, whose
value is chosen so that roughly 25% of all possible one-step mu-
tations from the wild-type argT sequence have a scaled selection
coefficient jNesj< 1 and about 38% of all mutations are virtually
lethal, Nes< − 20 (SI Appendix, Fig. S1A). Here the selection
coefficient, s, denotes the difference in log fitness. This choice of
fitness function is thus consistent with experimental data on the
distribution of fitness effects of mutants (70–73).
We implement evolution under weak mutation as follows. We

initialize the population fixed for a starting sequence, always cho-
sen to be the wild-type (Protein Data Bank) argT sequence. At each
discrete time step we propose a set of 10 point mutations to the
current sequence, x. We compute the fixation probability for each
of the mutants, y, according to the standard Moran process (74):

πðx→ yÞ= 1−
�
fx
�
fy
�

1−
�
fx
�
fy
�Ne, [1]

where fx denotes the fitness of genotype x and πðx→ yÞ denotes the
fixation probability of a mutant genotype y introduced into a pop-
ulation fixed for genotype x. Next, we let genotype y fix according
to its fixation probability relative to all proposed mutants,

Pðx→ yÞ= πðx→ yÞP
zπðx→ zÞ, [2]

and we update the state of the population from sequence x to
sequence y. We iterate this process for a total of 30 discrete time

A

B

Fig. 1. (A) A schematic model indicating how a focal substitution may be
contingent on prior substitutions and may constrain future substitutions
along an evolutionary trajectory, owing to epistasis. (B) A model of protein
evolution under weak mutation and purifying selection for thermodynamic
stability. Starting from the wild-type sequence of argT we propose 10 ran-
dom 1-aa point mutations. For each of the proposed mutants we compute its
predicted stability (ΔG) using FoldX, and its associated fitness. The fitness
function is assumed to be either Gaussian or semi-Gaussian, with a maximum
at the wild-type stability. One of the proposed mutants fixes in the pop-
ulation, based on its relative fixation probability under the Moran model
with effective population size Ne. This process is iterated for 30 consecutive
substitutions to produce an evolutionary trajectory. We simulate 100 repli-
cate trajectories, each initiated at the wild-type argT sequence.
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steps, each corresponding to a substitution event, so that the final
protein sequence is achieved by an evolutionary trajectory of 30
substitutions starting from the initial, wild-type argT sequence (Fig.
1B). The timescale of our simulations therefore represents roughly
13% divergence at the protein sequence level, which is similar to
divergences often studied by comparative sequence analysis. We
simulate 100 replicate trajectories, started from the same initial se-
quence, and we typically report results on the ensemble average.

Quantifying Epistasis, Contingency, and Entrenchment. We seek to
understand the structure of epistasis between substitutions along
evolutionary trajectories of protein sequences under purifying
selection. To quantify epistasis we use a standard definition for
pairs of subsequent mutations, as well as a natural generalization
of this definition for longer trajectories.
Consider first the case in which the population starts at some

genotype S0 with fitness f0. Upon fixation of the first substitution
the population moves to genotype S0,1 with fitness f0,1. Upon
fixation of the second substitution the population moves to ge-
notype S0,1,2 with fitness f0,1,2. In the absence of the first muta-
tion, the second mutation would have moved the population to
genotype S0,2 with fitness f0,2. The standard measure of epistasis
between these two substitutions is defined as

E=
�
log

�
f0,1,2

�
− logðf0Þ

�
−
��
log

�
f0,1

�
− logðf0Þ

�

+
�
log

�
f0,2

�
− logðf0Þ

��
.

[3]

Writing the definition in this way suggests that we view epistasis
as the deviation between the fitness effect of the double mutant
and the sum of the fitness effects of the single mutants.
This definition of epistasis can alternatively be interpreted in

terms of the order in which substitutions occurred along the
evolutionary trajectory. For instance, in the above scenario mu-
tation 1 fixes before mutation 2 and it therefore has fitness effect
logðf0,1Þ− logðf0Þ. However, we can also ask what the fitness ef-
fect of mutation 1 would have been had the two mutations fixed
in the opposite order. In this alternative scenario, the fitness
effect of mutation 1 would have been logðf0,1,2Þ− logðf0,2Þ. The
standard definition of epistasis between a pair of mutants can be
rewritten as the difference between these two fitness effects:

E=
�
log

�
f0,1,2

�
− log

�
f0,2

��
−
�
log

�
f0,1

�
− logðf0Þ

�
. [4]

Thus, the standard measure of epistasis can be seen as a measure
of how much larger the fitness effect of the first substitution
would be if the order of the two substitutions were reversed.
This interpretation of epistasis in terms of substitution order

suggests a natural generalization, which will allow us to quantify
epistasis in longer evolutionary trajectories. Consider a trajectory
starting at the wild-type sequence and then subsequently fixing
mutations 1,2,3, . . . , n. For any mutation i, we can ask how much
larger the fitness effect of mutation i would have been under the
alternative trajectory in which mutation i is removed from po-
sition i along the trajectory—where it actually occurred—and
instead inserted at some other position j along the trajectory.
More formally, in such a trajectory we define the following
measure to quantify epistasis between substitutions i and j:

It is easy to verify that Eði, i+1Þ reduces to the standard measure of
epistasis between two subsequent substitutions.
This generalized definition of epistasis allows us to define

what we mean by contingency and entrenchment. A substitution
is contingent on previous substitutions if it is more likely to fix as
a result of the substitutions that preceded it. More precisely, for
i> j we define substitution i to be contingent on the preceding
substitutions j, . . . , i− 1 if Eði, jÞ < 0. The condition Eði, jÞ < 0 means
that substitution i is relatively more beneficial when it actually
occurs than it would have been had it occurred at some earlier
time step, j. Conversely, we say that a substitution i is entrenched
by subsequent substitutions if it becomes relatively more dele-
terious to revert as a result of the subsequent substitutions. More
precisely, for i< j we say a substitution i is entrenched by sub-
sequent substitutions i+ 1, . . . , j if Eði, jÞ > 0. The condition
Eði, jÞ > 0 means that the effect of reverting substitution i at time
j is relatively more deleterious than it would have been to revert
substitution i immediately after it initially occurred.

Results
Mutational Effects on Protein Stability. Random mutations in a
protein-coding sequence typically destabilize the protein struc-
ture (26, 72, 75–80). Thus, if protein evolution proceeded solely
via random substitutions, without any selection, we would expect
a decrease in protein stability over time. However, under puri-
fying selection to maintain a given degree of thermodynamic
stability, strongly destabilizing (or overstabilizing) mutations will
have low fitness and correspondingly low fixation probability, so
that the only mutations that substitute will tend to produce sta-
bilities similar to that of the wild-type sequence.
We simulated the evolution of the argT protein sequence under

selection for its native stability, starting from the wild-type se-
quence, computing stabilities (ΔG) and fixation probabilities of
mutants as described above. Starting from the wild-type sequence,
most one-step mutations are destabilizing (84%, binomial test
P <10−15). However, among the one-step mutations that fix in our
simulations of purifying selection, there is no significant bias to-
ward destabilization (54%, binomial test P = 0.48). This is due to
the fact that the average destabilizing effect is significantly greater
than the average stabilizing effect (t test P <10−15), and so the
average fitness of a destabilizing mutation is significantly lower
than that of a stabilizing mutation (t test P <10−15). More gen-
erally, we find that the mean stability effect of all substitutions at
their time of fixation is quite small, mean jΔΔGj= 0.58 kcal/mol,
with almost an equal number of stabilizing (48%) and de-
stabilizing (52%) mutations fixing along evolutionary trajec-
tories. These substitutions are typically nearly neutral (mean
jNesj= 2.34) (SI Appendix, Figs. S1B and S2B), such that the
fitness of the protein decreases by only ∼ 0.04% on average after
30 substitutions. In addition to having mild effects on stability
and fitness, substitutions are distributed nonrandomly in the
protein structure. We find more substitutions at sites with
greater solvent-accessible surface area (Pearson’s correlation
ρ= 0.54, P <10−15; see SI Appendix) as well as at residues oc-
cupying small volumes in the protein (Pearson’s correlation
ρ=−0.22, P =0.0008; see SI Appendix), consistent with bio-
physical expectations (46, 81–83).
By contrast, when we simulate protein sequence evolution via

the fixation of random point mutations—that is, without any

Eði, jÞ =

8<
:

�
log

�
f0,1,...,j−1,i

�
− log

�
f0,1,...,j−1

��
−
�
log

�
f0,1,...,i

�
− log

�
f0,1,...,i−1

��
, for  i≥ j

�
log

�
f0,1,...,j

�
− log

�
f0,1,...,i−1,i+1,...j

��
−
�
log

�
f0,1,...,i

�
− log

�
f0,1,...,i−1

��
, for  i< j,

[5]
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selection at all—then the stability for the native structure decreases
along evolutionary trajectories, as illustrated by the ensemble mean
trajectory shown in SI Appendix, Fig. S2A. Likewise, in the absence
of selection substitutions are more often destabilizing than stabi-
lizing (binomial test, P< 10−15), as expected from empirical studies
on the effects of random mutations (61, 72, 75, 76, 80).

Epistasis Along Evolutionary Trajectories: Contingency. We quanti-
fied the structure of epistasis between substitutions along evo-
lutionary trajectories of argT sequences simulated under purifying
selection. We used a generalized definition of epistasis Eði, jÞ that
applies to any pair of substitutions i and j along a trajectory
(Model). We first studied the degree of contingency between
substitutions in these trajectories. For i> j we say that substitu-
tion i is contingent on the preceding substitutions j, . . . , i− 1 if
the condition Eði, jÞ < 0 holds. This contingency condition means
that substitution i is relatively more beneficial at the time of its
actual fixation than it would have been had it been introduced at
some earlier step, j.
We find that substitutions in argT under purifying selection are

often epistatic and they tend to be contingent on earlier sub-
stitutions. Fig. 2A (left side) illustrates this phenomenon by fo-
cusing on contingency between the substitutions that occur at step
i= 16 and the substitutions that occur at earlier steps j< 16, among
an ensemble of 100 replicate evolutionary trajectories. The mean
epistasis measure Eð16, jÞ is significantly less than zero for each step
j< 16 (t test, P< 0.002 for each j)—indicating that the substitutions
that fix at step i= 16 are contingent on earlier substitutions.
There is a subtlety associated with the contingency condition

Eði, jÞ < 0, which compares the selection coefficient of substitution
i when it fixes versus the selection coefficient of the same mu-

tation had it fixed at some earlier step, j. These two selection
coefficients can each be negative or positive. The condition
Eði, jÞ < 0 means that substitution i is “relatively more beneficial”
at time i compared with at a prior time; this includes the possi-
bility that substitution i is in fact deleterious, but less deleterious
at the time of its actual fixation compared with having fixed at
some earlier time. In practice, in simulations under purifying
selection most of the mutations that fix along the evolutionary
trajectory are neutral or nearly neutral at the time of their fix-
ation (SI Appendix, Fig. S1B). So, in these simulations the con-
dition Eði, jÞ < 0 typically means that substitution i would have
been deleterious had it occurred at the earlier step j.
The extent of contingency in our simulations is illustrated in

Fig. 2B, Top, which compares the selection coefficients of the
mutations that fix at all steps i= 2 . . . 30 with the selection co-
efficients of the same mutations had they been introduced at
earlier steps j< i along their evolutionary trajectories. When
considering all pairs of ordered substitutions j< i in our simula-
tions under purifying selection we find a mean value NeE=−5.86
and that ∼ 70% of pairs exhibit Eði, jÞ < 0. In other words, the great
majority of mutations that fix are contingent on earlier sub-
stitutions—that is, the same mutations would typically be delete-
rious were they introduced in prior genetic backgrounds. These
results imply that, even under purifying selection for stability, the
mutations that fix during the evolution of a protein sequence are
typically contingent on the history of prior substitutions.

Epistasis Along Evolutionary Trajectories: Entrenchment. We have
shown that mutations that fix under purifying selection are con-
tingent on earlier substitutions. Now we ask the converse question:
What is the effect of later substitutions on the fitness effects of

A B

Fig. 2. (A) Substitutions that accrue under purifying selection are typically epistatic: They exhibit both contingency with earlier substitutions and entrenchment
by later substitutions. A indicates the fitness effects of the mutations that fix at step i= 16 if they were introduced into earlier (contingency j<16) or later
(entrenchment j> 16) genetic backgrounds. Under purifying selection, the epistatic coefficients Eð16, jÞ are significantly less than zero, on average, for all j< 16 and
significantly greater than zero for all j> 16. Thus, the substitutions under purifying selection, which are nearly neutral when they fix, are contingent on earlier
substitutions, and they become more deleterious to revert as later substitutions accrue. Vertical bars indicate ±2 SE around the ensemble mean of 100 replicate
simulated populations. (B) Distribution of scaled selection coefficients (Nes) for all substitutions that fix along evolutionary trajectories. The gray histogram shows
the distribution of selection coefficients of these mutations at the time that they fix (“near-neutrality”), the blue histogram shows the distribution of selection
coefficients for the same mutations i if they were introduced in earlier backgrounds j= 0, . . . , i− 1 (“contingency”), and the red histogram shows the distribution
of selection coefficients for the same mutations i if they are removed from later backgrounds j= i+1, . . . , 30 (“entrenchment”).
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substitutions that have already fixed? In particular, we ask whether
mutations that are nearly neutral when they fix subsequently be-
come deleterious to revert later in the trajectory—a phenomenon
that Pollock et al. (18) have called an “evolutionary Stokes shift.”
A positive value of Eði, jÞ for j> i means that reverting a focal

substitution i in a later background containing mutations 1, . . . , j
is relatively more deleterious than reverting it immediately after
it fixes in the population. Thus, Eði, jÞ > 0 indicates entrenchment
of substitution i by the following substitutions i+ 1, . . . , j.
We find that substitutions under purifying selection are typi-

cally entrenched by later substitutions. Fig. 2A (right side) il-
lustrates this phenomenon by focusing on entrenchment of
substitutions that occur at time i= 16 by substitutions that occur
at later time points j> i along the same evolutionary trajectories.
The mean entrenchment coefficient Eð16, jÞ is significantly greater
than zero for each subsequent step j> 16 (t test, P< 10−3 for each j).
In other words, even though most of these mutations are nearly
neutral at the time of fixation, reverting the same mutations from
later genetic backgrounds is typically deleterious.
More generally, when considering all ordered pairs of substit-

utions under purifying selection, the epistatic values Eði, jÞ for j> i
are significantly greater than zero on average (t test, P< 10−15)
with a mean value NeE= 9.96, meaning that substitutions are
more deleterious to revert in later backgrounds. In particular,
we find that ∼72% of pairs j> i exhibit positive values Eði, jÞ > 0,
indicating a strong tendency for later substitutions to entrench
earlier substitutions.
Moreover, the degree to which a substitution becomes en-

trenched by epistasis tends to increase with each subsequent
substitution that accrues. A positive slope of Eði, jÞ versus j, for j> i,
indicates that the focal substitution i becomes increasingly dele-
terious to revert as subsequent substitutions accumulate. We es-
timated the slope of Eði, jÞ versus j using least squares and found
that this slope is significantly positive, on average, across all steps
i in our simulations (one-tailed t test, P< 10−15). Likewise, over
80% of substitutions exhibit positive slopes, indicating a tendency
for the strength of entrenchment to increase over time (see also SI
Appendix, Fig. S3). Thus, even under purifying selection, we find
that protein-coding substitutions are rendered “irreversible” by
subsequent substitutions and that the strength of irreversibility
tends to increase with time.
The trend of increasing entrenchment that we have observed

in our simulations has an intuitive explanation. After a focal
mutation fixes in a protein, subsequent substitutions are typically
contingent on its presence. As a result, reverting the focal sub-
stitution at a later point along the evolutionary trajectory becomes
increasingly deleterious, because it interacts with a greater num-
ber of intervening substitutions. Therefore, at least on the time-
scale of divergence we have studied, we naturally expect that the
degree of a substitution’s entrenchment should increase over time.
Over very long time scales, however, as substitutions begin to
saturate, the degree of entrenchment will likely level off or per-
haps even decrease.

Epistasis Between Consecutive Substitutions. We have shown that
the selection coefficient of a given substitution is contingent on
prior substitutions and becomes entrenched by subsequent sub-
stitutions, constraining evolution against reversions as time pro-
ceeds. However, does epistasis constrain the paths available to
evolution on shorter time scales as well—that is, between con-
secutive substitutions?
To address this question we consider an evolutionary trajec-

tory starting at genotype A followed by subsequent substitutions
B and C, producing the trajectory A→AB→ABC. We ask how
likely is the observed path compared with the alternative path
A→AC→ACB. Assuming no back mutations, the probabilities
of the two paths are determined solely by the probability of the

first substitution. We calculate the probability of seeing one path
versus the other based on their fixation probabilities:

PðA→AB→ABCÞ= πðA→ABÞ
πðA→ABÞ+ πðA→ACÞ. [6]

A value PðA→AB→ABCÞ> 1=2 indicates that the actual path
taken during evolution (A→AB→ABC) is more favorable than
the alternative path (A→AC→ACB), and vice versa.
We calculated the relative probabilities of actual and alternate

paths for all pairs of consecutive substitutions in the ensemble of
simulated evolutionary trajectories. These probabilities, whose dis-
tribution is shown in Fig. 3, exhibit an interesting bimodal pattern.
For a large portion of consecutive substitutions, including those
whose effects are additive, the actual and alternative paths were al-
most equally probable, producing a mode near 0.5. By contrast, for
another large portion of consecutive substitutions (>26% of pairs),
the actual path was more than 30 times as likely as the alternate path,
producing a mode near 1. This second mode indicates a high degree
of epistasis: Many substitutions are conditional on the presence of
the immediately preceding substitution. Indeed, 19% of consecutive
substitutions are highly contingent (NeEði+1, iÞ < −10). Thus, even
over short timescales, epistasis plays a large role in shaping the paths
taken by evolution under purifying selection.

Sources of Epistasis. The high degree of epistasis for fitness ob-
served in our simulations under purifying selection could result
from two alternative sources: epistasis in the computationally
predicted protein stabilities themselves, or epistasis in the non-
linear mapping from stability to fitness (or both). If the com-
bined effect of multiple substitutions on predicted stabilities does
not equal the sum of their individual effects, then this form of
epistasis for stability would induce epistasis in the fitness effects

Fig. 3. Epistasis constrains paths available to evolution. The figure shows
the relative probability of fixing two consecutive substitutions (B and C) in
their observed order in simulated evolution (A→AB→ABC) compared with
the reversed order (A→AC→ACB). Under purifying selection for stability,
the distribution of relative fixation probabilities is distinctly bimodal. A large
proportion of substitutions have almost equal probability of taking either
path, producing a mode near 0.5. For another large portion (>26%) of pairs,
the observed path is more than 30 times as likely as the alternate path
(producing a mode near 1), indicating that many substitutions are highly
contingent on the immediately preceding substitution.
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of substitutions. Alternatively, even in the absence of epistasis
for protein stability, epistasis in fitness may arise from the non-
linear mapping between stability and fitness. To resolve which of
these two effects dominates we undertook additional analyses.
Briefly, we defined two measures that quantify the degree of

epistasis in protein stabilities themselves, and the degree of epis-
tasis arising from the stability-to-fitness mapping (SI Appendix).
We found that epistasis for stability explains a large proportion of
the observed variance in epistasis for fitness (R2 = 0.517, SI Ap-
pendix, Fig. S6A). By contrast, epistasis arising solely from the
stability-to-fitness map explains very little variance in epistasis for
fitness [R2 = 0.02, SI Appendix, Fig. S6B; the two R2 values
reported here are not expected to sum to 1 (see SI Appendix)].
Thus, our results on epistasis for fitness (Fig. 2) are driven pri-
marily by epistasis in the effects of mutations on protein stabilities
themselves, rather than nonlinearities in the stability-fitness map.
The strong influence of epistasis for protein stability in our

simulations is surprising in light of experimental data showing
that the effects of mutations on stability are typically additive (58,
59). To determine whether the nonadditivity we detect is an ar-
tifact of our computational procedure for estimating the stability
of mutations, we constructed 1,000 pairs of single mutations, and
their corresponding double mutants, around the wild-type argT
sequence. We found that the stability effects of these double
mutants were very closely predicted by the summed effects of

their corresponding single mutants (R2 = 0.96, Fig. 4A). Similarly,
fitting an additive model for stability to each individual pair of
mutations shows that most pairs are very nearly additive (median
R2 = 0.999; see SI Appendix). We performed the same exercise,
constructing 1,000 pairs of single mutations and their corre-
sponding double mutations, around an evolved argT sequence
which differs at 16 sites from the wild type. Once again, we found
that the stability effects of double mutants are well predicted by
the summed effects of single mutants (R2 = 0.92, Fig. 4B), and
additive models typically explain most of the variation in stability
(median R2 = 0.974 for individual pairs, see SI Appendix). Fur-
thermore, the stability effects of all single mutations in the wild-
type argT sequence are highly correlated with their effects in the
evolved argT sequence (R2 = 0.83, Fig. 4C). This correlation,
produced by FoldX, is comparable to the correlation of stability
effects across two genetic backgrounds with the same level of
divergence as measured experimentally by Ashenberg et al. (61)
(R2 = 0.90). All of these results confirm that the effects of random
mutations on stability predicted by FoldX are almost entirely
additive, in accordance with experimental data (58, 59, 61).
However, when we repeat the same tests for additivity on the

consecutive substitutions that occur in our simulated evolutionary
trajectories, a very different picture emerges. These substitutions
that occur under purifying selection are much less additive
(R2 = 0.26 when predicting the stability effects of double mutants
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Fig. 4. Additivity of stability effects. (A) The effects of random mutations on protein stability as calculated by FoldX. The ΔΔG of double mutants in the wild-
type argT sequence are highly correlated with the summed effects of their corresponding single mutations. (B) Starting from an evolved argT sequence, which
differs from the wild type by 16 substitutions, the ΔΔG of double mutants are, again, highly correlated with the summed effects of their corresponding single
mutations. (C) The stability effects of all point mutations around the wild-type argT sequence are highly correlated with their effects in the evolved argT
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from the summed effects of single mutants, Fig. 4D; median
R2 = 0.82 when fitting a linear model to each pair of mutations
individually). This suggests that, whereas random mutations have
nearly additive effects on stability (Fig. 4 A–C), evolution under
purifying selection enriches for substitutions with epistatic effects
on stability (Fig. 4D).

Magnitude of Epistasis. To quantify the magnitude of epistasis for
stability in our simulations, we examined the effects of the mu-
tations that fixed across a range of different genetic backgrounds.
In particular, for each mutation that fixed along an evolutionary
trajectory, we assayed its stability effect in all 30 genetic back-
grounds from the same trajectory, calculating both the the SD of
ΔΔG, to determine the across-background variation in stability
effects, and the mean jΔΔGj, to determine the across-back-
ground mean stability effect.
We found that the across-background SD in stability effects has

an ensemble mean of 0.80 kcal/mol. This value is small compared
with the average magnitude of stability effects of random muta-
tions in the wild-type background (mean jΔΔGj= 2.98 kcal/mol).
In other words, the degree of epistasis for stability along the
evolutionary trajectories is small compared with the typical effects
of random mutations (see also SI Appendix, Fig. S8). This degree
of variation observed in our simulations is roughly consistent with
the experimental results of Risso et al. (84), who report changes
in the stability effects of mutations between modern and recon-
structed ancestral backgrounds in the range of ±1 kcal/mol, as
well as with the variation in stability effects reported by Ashen-
berg et al. (61).
The across-background mean effect on stability (mean

jΔΔGj= 1.02 kcal/mol) was also smaller than the mean effect
of random mutations in the wild-type background (mean
jΔΔGj= 2.98 kcal/mol). Moreover, when introducing observed
substitutions across all 30 genetic backgrounds from the same
trajectory, the frequency of absolute stability effects exceeding
2.98 kcal/mol was only 0.04. Thus, the mutations that fix in our
simulations of purifying selection tend to have relatively mild
effects on stability, across many backgrounds.
Whereas the mutations that fix during our simulations have

mild effects across many backgrounds, they have yet milder ef-
fects on the genetic background in which they actually fixed:
mean jΔΔGj= 1.02 kcal/mol across genetic backgrounds versus
mean jΔΔGj= 0.58 kcal/mol at the time of fixation. This value is
also consistent with the results of an experimental study by
Serrano et al. (59), who found that mutations that fix along a
trajectory tend to have jΔΔGj< 1 kcal/mol.
Taken together, the results above help to resolve the apparent

contradiction between the lack of epistasis in the stability effects
of random mutations, compared with the prevalence of epistasis
for the mutations that fix under simulated purifying selection.
Natural selection in our simulations permits only mutations of
very small effect to fix. A mutation can have a very small effect
either because it has a very small effect in all backgrounds, or
because epistatic interactions make its effect especially small in
the background in which it fixes. The analyses above show that
the mutations that fix tend to have small effects in most back-
grounds, but they have yet smaller effects on the particular
background in which they fix. Because purifying selection en-
riches for mutations of small effect, it therefore also enriches for
mutations with epistatic interactions that ameliorate its stability
effects at the time of its fixation. Thus, even though there is only
a small amount of epistasis between random mutants, purifying
selection on protein stability will enrich for epistasis among the
mutations that fix. This phenomenon reflects the general prin-
ciple of “regression to the mean” (85): Choosing observations
based on the high value of a response variable enriches for both
observations whose predictor variables produce a high response
and for observations with large positive error terms (86, 87). In

other words, purifying selection on protein stability is expected to
enrich for epistasis, even though the effects of random mutations
on stability are virtually additive.

Robustness of Simulation Results
Alternate Fitness Function. Our model of purifying selection as-
sumes that overstabilizing mutations are as deleterious as desta-
bilizing mutations, so that only the wild-type stability has optimal
fitness. However, several studies have shown that overstabilizing
mutations can be neutral under stabilizing selection (75, 77, 80,
88). Therefore, we also considered an alternative, semi-Gaussian
fitness landscape in which argT sequences more stable than the
wild type are just a fit as the wild type (Fig. 1B). We chose the
variance of the semi-Gaussian to ensure, as with the Gaussian,
that roughly roughly 25% of all possible one-step mutations from
the wild-type argT sequence are nearly natural (jNesj< 1, see
SI Appendix, Fig. S4). We ran the same set of simulations
(100 replicate trajectories, each for 30 substitutions) on this al-
ternative fitness landscape, and we found that our results remain
qualitatively unchanged.
The absolute effects of all substitutions that accrue on the semi-

Gaussian landscape (mean jΔΔGj= 0.77 kcal/mol) are slightly
higher on average than under the Gaussian landscape (mean
jΔΔGj= 0.58 kcal/mol), owing to the lack of fitness penalty for
large stabilizing substitutions. Nonetheless, evolved proteins that
have accrued 30 substitutions on the semi-Gaussian landscape are
only marginally more stable (∼ 0.5 kcal/mol) on average than the
initial, wild-type sequence.
Unlike on the Gaussian landscape, where strict neutrality is

extremely rare, 25% of consecutive substitutions are strictly
neutral on the semi-Gaussian landscape (SI Appendix, Fig. S5).
Despite this difference, the overall fraction of highly epistatic
consecutive substitutions—substitutions for which evolution is 30
times more likely to proceed via the observed path than the al-
ternate path—is similar for both Gaussian (∼26%) and semi-
Gaussian (∼23%) fitness landscapes (SI Appendix, Fig. S5). All
of our other results on epistasis in the Gaussian simulations
are also similar to the semi-Gaussian simulations: In ∼53% of
pairs, later substitutions were contingent on earlier substitutions
(Eði, jÞ < 0), with mean value NeE=−11.22, and in 52% of pairs
earlier substitutions were entrenched by subsequent substitutions
(Eði, jÞ > 0), with mean value NeE= 18.22 (SI Appendix, Fig. S4D).
Finally, we find that 76% of substitutions show increasing en-
trenchment in semi-Gaussian simulations (Binomial test, P<
10−15, slope based on 20 substitutions or more), similar to the
Gaussian case.
As in the Gaussian case, epistasis for fitness observed during

evolution on the semi-Gaussian fitness landscape is primarily
due to nonadditivity in ΔΔG of nearly neutral substitutions.
Consecutive substitutions along semi-Gaussian evolutionary
trajectories are less additive for stability (R2 = 0.4, SI Appendix,
Fig. S7) than random mutations around either the wild-type
sequence or around an evolved sequence 16 substitutions away
(R2 > 0.9, Fig. 4 A and B). Furthermore, epistasis in stability
explains a large proportion of epistasis in the fitness effects of
substitutions (R2 = 0.33), whereas the nonlinear mapping from
stability to fitness accounts for a very small fraction of epistasis in
fitness (R2 = 0.03, SI Appendix, Fig. S6 C and D).
As in the Gaussian case, the average magnitude of stability

effects of fixed substitutions across backgrounds (mean jΔΔGj=
1.10 kcal/mol) for the semi-Gaussian landscape is smaller than the
average magnitude of stability effects of random mutations in the
wild-type background (mean jΔΔGj= 2.98 kcal/mol). Likewise,
the frequency of mutations in the across-background semi-
Gaussian dataset with an absolute stability effect larger than
2.98 kcal/mol was only 0.05. Thus, the mutations that fix in our
semi-Gaussian simulations tend to have relatively mild effects
on stability across many backgrounds.
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In summary, our results are qualitatively the same under both
the Gaussian and semi-Gaussian fitness landscapes. This con-
cordance reflects the simple fact that mutations increasing sta-
bility beyond that of wild type are extremely rare (80), and so the
shape of the fitness function for stabilities greater than wild-type
has little effect on the evolutionary dynamics.

Larger Sample of Random Mutations. The results reported above
are based on 100 replicate simulations of argT evolution under
weak mutation. At each discrete step in these simulations we
proposed 10 point mutations, for reasons of computational
tractability, from which one was chosen to substitute. To verify
that our results are not influenced by the relatively small sample
of mutations, we ran a set of shorter simulations (100 replicates,
each for 20 substitutions) proposing in this case 100 point mu-
tations at each step. All of our qualitative results remain un-
changed under this larger sampling scheme (SI Appendix, Fig. S9
and Table S1).

Discussion
We have developed a computational framework for studying the
evolution of protein sequences under purifying selection for
native structure and stability. Using the ligand-binding protein
argT as a representative example, our results reveal extensive
epistasis between the mutations that fix under selection. These
results suggest a coherent picture of the role of epistasis in
protein evolution under long-term purifying selection.
We find that although most mutations are nearly neutral when

they fix, the same mutations would typically be deleterious if in-
troduced on earlier genetic backgrounds. Thus, the substitutions
that accrue along an evolutionary trajectory are typically contin-
gent on epistatic interactions with earlier substitutions. In fact, a
sizable fraction of substitutions are contingent upon the presence
of the immediately preceding substitution.
We also find that once a mutation fixes in a protein, the fitness

effect of reverting the mutation becomes more deleterious over
time. That is, after a mutation fixes it becomes entrenched and
difficult to remove due to epistatic interactions with subsequent
substitutions. In addition, the degree of entrenchment tends to
increase over time.
Taken together, our computational studies of protein evolu-

tion under purifying selection suggest that epistasis induces both
contingency and entrenchment. There are also theoretical rea-
sons to expect that these two phenomena will occur generically in
any fitness landscape that combines the conditional neutrality of
mutations with a mode of evolution in which substitutions fix
sequentially. In particular, both of these phenomena are conse-
quences of the fact that the fitness effects of a substitution de-
pend on substitutions that precede it.
The quantitative approach used here also allows us to dissect

the sources of epistasis causing contingency and entrenchment in
our simulations. We find that epistasis is due, in large part, to
nonadditivity in the effects of mutations on protein stability. This
result is surprising because, both empirically and in our own
simulations, the effects of most mutations on protein stability are
nearly additive (58, 59). The resolution to this apparent paradox
comes from recognizing that natural selection can detect very
small differences in fitness. Thus, even a small amount of epis-
tasis at the level of stability can have a profound effect on the
evolutionary process. Furthermore, only those mutations with
very small effects are permitted to fix under purifying selection.
This form of selection enriches for epistasis because, although
the mutations that fix tend to have small stability effects in most
backgrounds, these mutation have particularly small stability
effects in the backgrounds in which they fix, owing to epistasis.
Indeed, the observed enrichment for epistasis is simply an
example of the principal of regression to the mean, which has

previously been implicated in shaping the frequency of epistasis
in adaptive evolution (86, 87).
Our study provides insight into a recent debate concerning the

degree to which amino acid preferences at a site change as a
protein evolves (18, 61, 84, 89). Based on simulations of long-
term protein evolution similar to those conducted here, Pollock
et al. (18) argued that coevolution between sites would result in
site-specific amino acid preferences that change substantially
over time. In particular, they suggested that the longer an amino
acid remains fixed at a site, the more deleterious it should be-
come to revert. Ashenberg et al. (61) and Risso et al. (84)
responded with empirical evidence that the stability effects of
mutations are largely conserved over time. Our results suggest a
possible resolution to this debate, by showing that even a rela-
tively small degree of nonadditivity in the stability effects of
mutations can have a large effect on the evolutionary process. If,
as we observe, only those mutations with small stability effects
(e.g., jΔΔGj< 1 kcal/mol) can fix, then nonadditivity on the order
of 1 kcal/mol [comparable to that reported by Risso et al. (84)] is
sufficient to render a substantial fraction of mutations that fix
effectively irreversible except on a subset of genetic backgrounds.
Thus, epistasis for stability may still produce increasing en-
trenchment over time even if the stability effects of mutations
remain largely conserved.
Our analysis is also consistent with the results of two recent

comparative studies of sequence evolution that sought to eval-
uate whether site specific preferences change over time. Naumenko
et al. (39) studied the rate of reversion and found that the
longer an amino acid had been present at a site, the lower the
reversion rate to the ancestral amino acid. This is precisely what
would be expected if the entrenchment observed in our simula-
tions occurs in nature. Similarly, Goldstein et al. (90) studied the
probability of parallel evolution along two lineages as a function
of the evolutionary distance between those two lineages. They
found that the larger the evolutionary distance between the two
lineages, the lower the rate of convergent evolution. This is also
consistent with our hypothesis that the mutations permitted to fix
at a particular site are contingent on earlier mutations: The more
diverged a pair of lineages, the fewer preceding substitutions
they share, and the greater the difference between the set of
substitutions that are acceptable at a site.
Our results are also related to several other recent studies on

protein evolution under purifying selection. Breen et al. (32) have
recently argued that epistasis of the form described here—where
some substitutions are only permissible due to preceding sub-
stitutions—is the primary factor in molecular evolution. Although
the formal validity of their inference has been the topic of debate
(91), our simulation results are in accordance with their basic
contention and provide a detailed view of the form of epistasis in
proteins under purifying selection. Our results are also consistent
with the results of both theoretical (60) and empirical studies (6,
72) showing that epistatic interactions are in large part governed
by underlying biophysical interactions between substitutions.
All of our analysis has been enabled by formulating a model

that assigns fitness effects to mutations based on computational
predictions of protein stabilities. This approach accounts for
possible dependencies among sites, whereas most models of
protein sequence evolution along a phylogeny assume that sites
evolve independently (51–55). Such phylogenetic models neces-
sarily disregard any possible epistatic interactions between sites.
Although convenient for reconstructing phylogenies or calcu-
lating simple summary statistics, such as dN/dS, we know that
proteins are in fact highly coordinated structures whose residues
often experience physiochemical interactions that fundamentally
determine fold, stability, and function. Our results suggest that
incorporating these biophysical factors, and the resulting non-
independence between sites, may produce more accurate models
of protein evolution (92–94).
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The approach we have used here nonetheless makes a number
of simplifying assumptions. In particular, our evolutionary sim-
ulations do not allow cosegregating mutations—that is, we as-
sume weak mutation. Although this assumption is typical in
models of long-term molecular evolution (but see refs. 95–97 for
some exceptions), it is known that polymorphism can sub-
stantially affect the dynamics of an evolving population because a
compensatory mutation can occur on the background of a seg-
regating deleterious allele (98–100). More work is required to
understand how polymorphism in a population might affect the
prevalence of contingency and entrenchment.
We have also assumed that purifying selection acts on the global

stability of a protein. In reality, however, it is likely that the
strength of selection on stability varies within a protein—so that
the protein core experiences stronger purifying selection than the
periphery (46, 81–83). Incorporating local stability requirements
would certainly improve our understanding of selective con-
straints, but it seems unlikely to qualitatively change our results on
the dominant sources of epistasis that modulate substitutions.
Our analysis has neglected other aspects of purifying selection

on thermodynamic aspects of proteins—in particular, selection
against adopting alternative structures (101, 102). Ideally, one
could incorporate negative selection against alternative struc-
tures by threading sequences against a large “decoy” database of
alternative structures. Even though decoy datasets do not always
represent all competing folds, leading to errors in energy anal-
ysis, adding this additional constraint, when it becomes compu-
tationally feasible, may yield important insights into the action of
selection as a protein sequence moves away from the wild type,
as well as insights into the origins of novel protein folds.
Finally, selection for stability is not the only source of selection

on a protein. A ligand-binding protein, such as considered here,
also experiences selection for its function—namely, binding its
target. Substitutions that are nearly neutral with respect to stability
might significantly alter the function and will be unlikely to fix, or
vice versa (77). However, the number of residues directly involved
in a ligand-binding protein’s function is typically small in com-
parison with those that predominantly influence its stability (77).
Hence our conclusions regarding epistatic nature of substitutions

are unlikely to be altered substantially by incorporating constraints
on ligand-binding function.
Our approach to studying epistasis in protein evolution is

fundamentally limited by our ability to computationally estimate
the stability effects of mutations. Although FoldX is one of the
state-of-the art force-field methods for such computations, and it
likely provides greater accuracy than computations based on
lattice structures or simple contact potentials (18, 61, 77, 78), the
ability to accurately predict the effects of specific mutations is
still quite limited (64, 65). Even though we are interested in
aggregate patterns across many substitutions, rather than the ef-
fects of individual mutations, our exploration of protein evolution
has still been restricted by computational cost, which required us
to sample a relatively small subset of proposed mutations. (We
have, at least, shown that are results remain unchanged by in-
creasing sample size 10-fold.) In addition, the accuracy of com-
putational predictions is reduced further as protein sequences
diverge from the wild type. We do, however, find results for the
patterns of epistasis between substitutions near the wild-type se-
quence similar to those we find toward the end of our simulated
evolutionary trajectories. This suggests that there is no systematic
bias in our results introduced by decaying accuracy of stability
predictions.
Our simulation results on epistasis provide a clear direction

for future experimental investigation. Whereas we have provided
a general statistical explanation for the increased prevalence of
epistasis among mutations that fix during protein evolution, em-
pirical studies may elucidate the specific biophysical mechanisms
underlying such nonadditive interactions.
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Supplementary Appendix

Sources of epistasis

The high degree of epistasis for fitness observed in our simulations under purifying selection could
result from two alternative sources: epistasis in the computationally predicted protein stabilities
themselves, or epistasis in the non-linear mapping from stability to fitness, or both. If the combined
effect of multiple substitutions on predicted stabilities (∆∆G) does not equal the sum of their
individual effects, then this form of epistasis for stability would induce epistasis in the fitness effects
of substitutions. Alternatively, even in the absence of epistasis for protein stabilities, epistasis in
fitness may arise from the non-linear (Gaussian or semi-Gaussian) mapping between stability and
fitness. To resolve which of these two effects dominates we undertook additional analyses, applied
to our simulations under each of the two fitness functions (Gaussian and semi-Gaussian).

First, we quantified the degree of epistasis in protein stabilities themselves using the following
metric, directly analogous to Eqn. 5.

S(i,j) =



[
D0,1,...,j−1,i −D0,1,...,j−1

]
−[

D0,1,...,i −D0,1,...,i−1

]
, for i ≥ j[

D0,1,...,j −D0,1,...,i−1,i+1,...j

]
−[

D0,1,...,i −D0,1,...,i−1

]
, for i < j,

(S1)

where Dx denotes the protein stability (∆G) of genotype x.
Likewise, to quantify epistasis arising solely from the stability-to-fitness mapping, we developed

a measure that isolates this effect by assuming no epistasis in protein stabilities (S(i,j) = 0). This
is equivalent to assuming that the effect on protein stability of substituting a focal substitution
i in an earlier background j (i ≥ j) is the same as when it just fixed. Likewise, we assume the
effect on protein stability of reverting a focal substitution i from a later background j (i < j) is
exactly opposite to its effect at the time when it fixed. To implement these assumptions we set the
“artificial” ∆G of genotypes not observed directly along evolutionary trajectories under purifying

S1



selection (j − 1, i and i− 1, i+ 1, . . . j) as follows:

D′0,1,...,j−1,i = D0,1,...,j−1 +
[
D0,1,...,i −D0,1,...,i−1

]
for i ≥ j (S2)

D′0,1,...,i−1,i+1,...j = D0,1,...,j −
[
D0,1,...,i −D0,1,...,i−1

]
for i < j (S3)

We then quantify epistasis due solely to the mapping of stability → fitness by modifying Eqn. 5 as
follows

M(i,j) =



[
log(f ′0,1,...,j−1,i)− log(f0,1,...,j−1)

]
−[

log(f0,1,...,i)− log(f0,1,...,i−1)
]
, for i ≥ j[

log(f0,1,...,j)− log(f ′0,1,...,i−1,i+1,...j)
]
−[

log(f0,1,...,i)− log(f0,1,...,i−1)
]
, for i < j,

(S4)

where f ′0,1,...,j−1,i and f ′0,1,...,i−1,i+1,...j are the fitnesses of genotypes j − 1, i and i− 1, i+ 1, . . . j, re-
spectively, under the Gaussian or semi-Gaussian fitness function, based on their “artificial” protein
stabilities, D′0,1,...,j−1,i and D′0,1,...,i−1,i+1,...j .

We find that the epistasis coefficient for stability itself (S(i,j)) explains a large proportion of the
variance in epistasis for fitness (E(i,j)): R

2 = 0.517 for Gaussian fitness function and R2 = 0.331
for the semi-Gaussian fitness function (SI Appendix, Fig. S6). By contrast, epistasis arising solely
from the stability-to-fitness map (M(i,j)) explains very little of the variance in epistasis for fitness:
R2 = 0.018 for Gaussian and R2 = 0.029 for semi-Gaussian fitness functions (The R2 reported
above are based on separate regressions and need not sum to one). Thus, our results on epistasis
for fitness are primarily driven by epistasis in the effects of mutations on protein stabilities, rather
than non-linearity in the stability-fitness mapping.

Additivity of ∆∆G under FoldX

To test whether the effects of random mutations on protein stability estimated by FoldX are ad-
ditive, we generated 1000 pairs of random mutations in the wild-type sequence, as well as double
mutants of each mutant pair. We found that the expected ∆∆G of a double mutant assuming
additivity (namely, the sum of ∆∆G of the two individual mutations, GA+GB) is highly correlated
with the actual ∆∆G of the double mutant provided by FoldX, GAB (R2 = 0.96, Fig. 5A). We
performed the same test for 1000 pairs of point mutations around an evolved argT sequence, 16
mutations away from the wild-type sequence, which was observed along one of our evolutionary
trajectories under purifying selection. As in the case of the wild-type sequence, we generated 1000
pairs of random mutations and their double mutants in the evolved sequence. Once again we found
that the effects of random mutations remain almost completely additive even far away from the
wild-type sequence (R2 = 0.92, Fig. 5B).

In addition to comparing the observed stability effects of double-mutants to the expected effects
under additivity in a correlation analysis, we also estimate the goodness-of-fit of a non-epistatic
model fit to the observed ∆∆G of mutations by calculating the coefficient of determination (R2)
for each pair of mutations. For each pair of mutations A and B, FoldX estimates the ∆∆G of
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the single mutants (GA, GB), the double mutant (GAB) and the wild-type (GWT=0). The sum of
squared residuals of a best-fit non-epistatic model can be calculated as

SSres = (GA − ĜA)2 + (GB − ĜB)2 + (GAB − ĜA − ĜB)2 (S5)

where ĜA and ĜB are the estimated ∆G of single mutations that minimize SSres. The coefficient
of determination of each pair can then be calculated as

R2 = 1− SSres
SStotal

(S6)

where SStotal = (GWT − µ)2 + (GA − µ)2 + (GB − µ)2 + (GAB − µ)2 (S7)

and µ =
GWT +GA +GB +GAB

4
(S8)

We calculated the R2 for each pair of random mutations around both the wild-type sequence,
and for each pair of mutations around the evolved sequence. For mutations around the wild-type
sequence we found that the non-epistatic model typically accounts for almost all the variation in
∆∆G (median R2 = 0.999). Similarly, for mutations around evolved sequence 16 steps away from
wild-type, the non-epistatic model explains most of the variation in ∆∆G (median R2 = 0.974).

In summary, we find that the effects of random mutations on protein stability as estimated
by FoldX are almost entirely additive, with very little residual epistasis. Nonetheless, we find
much more epistasis between consecutive substitutions along our evolutionary trajectories. The
correlation between the effects of single and double mutants for consecutive substitutions was much
weaker than for random mutations, with an R2 of 0.26 for the Gaussian fitness function (Fig. 5D)
and 0.38 for the semi-Gaussian fitness function (SI Appendix Fig. S7). Similarly, the median R2

when considering each pair of mutants individually (as described above) was 0.82 for the Gaussian
fitness function and 0.86 for the semi-Gaussian fitness function. Because the degree of additivity
for consecutive substitutions is weaker than the degree of additivity for random mutations, we
conclude that purifying selection for folding stability enriches for epistasis in stability along our
simulated evolutionary trajectories.

Biophysical properties of nearly-neutral substitutions

We analyzed the biophysical properties of the mutations that fixed along our simulated evolution-
ary trajectories under purifying selection. We analyzed the solvent accessible surface area (SASA)
and Laguerre-Voronoi volume. Prior studies have found a higher substitution rate at sites with
higher SASA and at residues occupying smaller volumes in the protein [1, 2, 3, 4].

We estimated SASA and volume of each residue in the WT sequence (PDB:1LAF) using the
VLDP server http://www.dsimb.inserm.fr/dsimb_tools/vldp/ [5]. We compared these quan-
tities to the number of times an amino acid at a site was substituted across our ensemble of 100
replicate evolutionary trajectories. (Very seldom did the same site substitute more than once in
any given trajectory.) Consistent with expectations, we found that sites with larger SASA in
the wild-type PDB tended to have a larger number of substitutions, under both Gaussian (Pear-
son’s correlation ρ = 0.536, p< 10−15) and semi-Gaussian fitness functions (Pearson’s correlation
ρ = 0.487, p< 10−14). Similarly, residues that occupy smaller volumes in the wild-type PDB tend
to have a larger number of substitutions, under both Gaussian (Pearson’s correlation ρ = −0.216,
p= 0.0008) and semi-Gaussian fitness functions (Pearson’s correlation ρ = −0.204, p= 0.0015).
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Additivity of ∆∆G and structural distance between residues

Even though the effects of most random mutations are nearly additive in the wild-type sequence,
we can nevertheless ask whether any residual epistasis in protein stabilities of double mutants is
related to the biophysical distance between residues in the folded three-dimensional structure. We
estimated the distance between the Cα atoms of the two amino acid residues using the R-package
bio3D. We found a weak but significant effect of distance between residues and the absolute degree
of non-additivity in their stabilities |∆∆G1,2−(∆∆G1+∆∆G2)| (Pearson’s correlation, p < 10−4).
In particular, mutations that are physically closer to each other tend to be more epistatic than
distant mutations. For instance, we find mutations that lie within 5 Å of each other tend to have
a higher fraction of strongly epistatic mutations (|∆∆G1,2 − (∆∆G1 + ∆∆G2)| > 1 kcal/mol),
compared to mutations that lie more than 20 Å apart (Fisher’s exact test, p = 0.002).

Larger sample of random mutations

In order to verify that our results are not influenced by the relatively small sample of mutations pro-
posed at each step (10) we ran a set of shorter simulations (100 replicates, each for 20 substitutions),
proposing in this case 100 point-mutations at each step under both Gaussian and semi-Gaussian
fitness landscapes. We then compared the results of these simulations to the results of our original
simulations when truncated to the same length.

In particular, with a 10-fold higher number of sampled mutations, we find the absolute effects
of substitutions on protein stability (|∆∆G| = 0.508 kcal/mol under Gaussian and |∆∆G| = 0.694
kcal/mol under semi-Gaussian) to be comparable to the stability effects of substitutions under lower
sample trajectories of the same length (|∆∆G| = 0.534 kcal/mol under Gaussian and |∆∆G| =
0.689 kcal/mol under semi-Gaussian). The fraction of highly epistatic consecutive substitutions—
substitutions for which evolution is 30-times more likely to proceed via the observed path than the
alternate path—also remains similar across both sampling regimes (high-sample Gaussian 13% and
semi-Gaussian 13%; low-sample Gaussian 14% and semi-Gaussian 17%). Finally, the average con-
tingency and entrenchment epistatic coefficients remain approximately unchanged when increasing
the number of sampled mutations (see SI Appendix Table S1, Fig. S9).

Code and supplementary data

The scripts and supplementary files for estimating ∆∆G of mutants using FoldX can be accessed
at http://mathbio.sas.upenn.edu/contingency_entrenchment.zip. The package also contains
the list of mutants that fixed along our evolutionary trajectories, and their stability estimates when
they fixed as well as in earlier (contingency) and later (entrenchment) backgrounds along the
trajectories. All of the stability datasets are provided as .RData objects.

S4



References

[1] Koshi JM, Goldstein RA (1995) Context-dependent optimal substitution matrices. Protein
Engineering Design and Selection 8:641–645.

[2] Mirny LA, Shakhnovich EI (1999) Universally conserved positions in protein folds: reading
evolutionary signals about stability, folding kinetics and function. J Mol Biol 291:177–196.

[3] Robinson DM, Jones DT, Kishino H, Goldman N, Thorne JL (2003) Protein evolution with
dependence among codons due to tertiary structure. Mol. Biol. Evol. 20:1692–1704.

[4] Bloom JD, Drummond DA, Arnold FH, Wilke CO (2006) Structural determinants of the rate
of protein evolution in yeast. Mol. Biol. Evol. 23:1751–1761.
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Figure S1: (A) The distribution of selection coefficients of all one-step mutations around the wild-
type argT sequence, under a Gaussian fitness function. Roughly 25% of all one-step mutants
are nearly-neutral, with |Nes| < 1, while roughly 38% of mutants are strongly deleterious, with
Nes < −20. (B) Under purifying selection, most substitutions that accrue in our simulations are
nearly-neutral. The histogram shows the scaled selection coefficients of all substitutions across 100
replicate evolutionary trajectories.
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Figure S2: (A) Substitutions that accrue under simulated purifying selection in Gaussian fitness
landscape do not change the overall stability of the protein; whereas the fixation of random point
mutations, in the absence of selection, tends to decrease protein stability. Vertical bars indicate
±2 SE around the ensemble mean of 100 replicate simulated populations, each initiated at the
wild-type argT sequence. (B) The distribution of selection coefficients for fixed (solid lines) and
random (dashed lines) point mutations sampled along the evolutionary trajectories during purifying
selection under a Gaussian fitness landscape. Most mutations that fix are nearly-neutral, whereas
randomly sampled mutations tend to be strongly deleterious.
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Figure S3: The mean epistatic effect (NeE(i,j)) between pairs of substitutions that fix at steps i and
j in replicate simulations of argT evolution under purifying selection (Gaussian fitness landscape).
Each point in the grid represents the ensemble mean of NeE(i,j) across 100 replicate simulations,
each initiated at the wild-type argT sequence. Contingency and entrenchment between substitu-
tions are represented in shades of blue and red, respectively. The intensity of color reflects the
magnitude of epistatic effects between pairs of substitutions. The mean NeE(i,j) is negative for
i > j and positive for i < j with the exception of three pairs where the mean epistatic coefficient
did not differ significantly from zero (t-test, p < 0.05 for all but three pairs i 6= j).

S8



sel_d

Fr
eq
ue
nc
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

<-20 -15 -10 -5 0
Selection coefficient Nes

Fr
eq
ue
nc
y

A

sel_d

Fr
eq
ue
nc
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<-20 -10 0 10 >20
Selection coefficient Nes

Fr
eq
ue
nc
y

B

-2
0

0
20

40
60

80

1:30

se
_m
r[1
:3
0]

0 4 8 12 16 20 24 28

Contingency Entrenchment

Markov Step

A
ve

ra
ge

 E
pi

st
at

ic
 C

oe
ffi

ci
en

t  
N
eE

(i,
j)

C

s_cnt

D
en
si
ty

0
0.
25

0.
5 Contingency

D

s_fix

D
en
si
ty

Fr
eq
ue
nc
y Near-neutrality

0
0.
25

0.
5

s_ent

D
en
si
ty

0
0.
25

0.
5 Entrenchment

<-20 -10 0 10 >20
Selection coefficient Nes

Figure S4: (A) The distribution of selection coefficients of all one-step mutations around the wild-
type argT sequence under a semi-Gaussian fitness function. Roughly 25% of all one-step mutants
are nearly-neutral with |Nes| < 1, while roughly 50% of mutants are strongly deleterious with
Nes < −20. (B) Under purifying selection against destabilizing mutations (semi-Gaussian fitness
function), most substitutions that accrue in our simulations are nearly neutral. The histogram
shows the scaled selection coefficients of all substitutions among 100 replicates of simulated evolu-
tionary trajectories. (C) Substitutions that accrue under purifying selection against destabilizing
mutations (semi-Gaussian fitness function) are highly epistatic: they exhibit both contingency with
earlier substitutions and entrenchment by later substitutions. The figure indicates the fitness effect
of substitutions that fixed at step i = 16 in earlier (contingency j < 16) or later (entrenchment
j > 16) genetic backgrounds across 100 independent evolutionary trajectories. Under purifying
selection, the average epistatic coefficient NeE(16,j) is significantly less than zero for all but two
j < 16; and significantly greater than zero for all j > 16 (t-test, p < 0.05). Thus, substitutions
that are nearly-neutral when they fix are typically contingent on earlier substitutions; and they
become deleterious to revert as later substitutions accrue. Vertical bars indicate ±2 SE around
the ensemble mean of 100 replicate simulated populations. (D) The distribution of scaled selection
coefficients (Nes) for all substitutions that fix along evolutionary trajectories (semi-Gaussian fitness
function). The gray histogram shows the distribution of selection coefficients of these mutations at
the time that they fix (“near-neutrality”); the blue histogram shows the distribution of selection
coefficients for the same mutations i if they were introduced in early backgrounds j = 0, . . . , i− 1
(“contingency”); and the red histogram shows the distribution of selection coefficients for the same
mutations i if they are removed from later backgrounds j = i+ 1, . . . , 30 (“entrenchment”).
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Figure S5: Purifying selection constrains paths available to evolution. The figure shows the prob-
ability of fixing two consecutive substitutions (B and C) in their observed order in simulated
evolution (A → AB → ABC) compared to the reversed order (A → AC → ACB). Under puri-
fying selection against destabilizing mutations (semi-Gaussian fitness function), the distribution of
relative fixation probabilities is distinctly bimodal. A large proportion of substitutions have almost
equal probability of taking either path, producing a mode near 0.5. For another large portion
(∼ 23%) of pairs the observed path is more than 30-times as likely as the alternate path (produc-
ing a mode near 1), indicating that many substitutions are highly contingent on the immediately
preceding substitution.
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Figure S6: Sources of epistasis in fitness between substitutions that accrue under purifying selection,
using either Gaussian (A & B) or semi-Gaussian (C & D) fitness functions. Epistasis in protein
stabilities (S(i,j), Eqn. S1) explains a large portion of the variance in epistasis for fitness (E(i,j),
Eqn. 4). By contrast, epistasis due to the non-linear mapping from stability-to-fitness (M(i,j),
Eqn. S4) explains little of the variance in epistasis for fitness (E(i,j)).
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Figure S7: Additivity of ∆∆G during evolution under purifying selection. Consecutive substitutions
along evolutionary trajectories under the semi-Gaussian landscape are only weakly additive (R2 =
0.38). The line y = x is represented in black and the best-fit regression line with zero intercept
(y = βx) is represented in red.
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Figure S8: The effects on protein stability and fitness of mutations that fix along evolutionary
trajectories simulated under Gaussian (A & B) or semi-Gaussian (C & D) fitness landscapes.
The green arrows indicate the mean absolute effects on protein stability (left panels) and on fitness
(right panels) of substitutions at the time of their fixation. The histograms represent the standard
deviations of the effects of the same substitutions introduced in different backgrounds along their
respective evolutionary trajectories. The red arrows, by contrast, indicate the mean absolute effects
of random mutations introduced in the wild-type argT sequence. Under both fitness landscapes,
substitutions have small absolute mean effects on protein stabilities at the time of fixation (|∆∆G| =
0.58 kcal/mol for Gaussian, and |∆∆G| = 0.77 kcal/mol for semi-Gaussian) relative to the mean
absolute effect of random mutations (|∆∆G| = 2.98 kcal/mol). Moreover, the effects of these
substitutions continue to remain fairly small and consistent across the 30 genetic backgrounds
within their respective evolutionary trajectories. Similarly, the effects of substitutions on fitnesses
(Nes) both at the time of their fixation and in other genetic backgrounds are much smaller than
the effects of random mutations (B & D).
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Figure S9: Substitutions that accrue along evolutionary trajectories under both Gaussian (A & B)
and semi-Gaussian fitness landscapes (C & D) are highly epistatic even with a 10-fold higher rate
of sampled mutations at each step. The figure indicates the fitness effect of substitutions that fixed
at step i = 10 in earlier (contingency j < 10) or later (entrenchment j > 10) genetic backgrounds
across 100 independent evolutionary trajectories. Under purifying selection, the average epistatic
coefficient NeE(10,j) is significantly less than zero for all j < 10 under Gaussian and all but one
j < 10 under semi-Gaussian landscapes; and significantly greater than zero for all j > 10 (t-test,
p < 0.05) under both fitness regimes. Thus, substitutions that are nearly-neutral when they fix
are typically contingent on earlier substitutions; and they become deleterious to revert as later
substitutions accrue. Vertical bars indicate ±2 SE around the ensemble mean of 100 replicate
simulated populations. (B & D) The distribution of scaled selection coefficients (Nes) for all
substitutions that fix along evolutionary trajectories. The gray histogram shows the distribution
of selection coefficients of these mutations at the time that they fix (“near-neutrality”); the blue
histogram shows the distribution of selection coefficients for the same mutations i if they were
introduced in early backgrounds j = 0, . . . , i − 1 (“contingency”); and the red histogram shows
the distribution of selection coefficients for the same mutations i if they are removed from later
backgrounds j = i+ 1, . . . , 20 (“entrenchment”).
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Gaussian fitness landscape semi-Gaussian fitness landscape

100 evolutionary trajectories of 20 substitutions Low sample       
(10 mutations)

High sample    
(100 mutations)

Low sample       
(10 mutations)

High sample    
(100 mutations)

Stability effect of substitutions at their time of fixation (mean |∆∆G|). 0.534 0.508 0.689 0.694

Stability effect of fixed substitutions in other backgrounds (mean |∆∆G|). 0.825 0.808 0.922 0.895

Fraction of substitutions contingent with earlier substitutions (E(i,j)<0). 0.68 0.69 0.52 0.49

Fraction of substitutions entrenched by later substitutions (E(i,j)>0). 0.70 0.70 0.49 0.46

Mean contingency epistatic coefficient (mean NeE). -3.799 -3.527 -7.802 -5.427

Mean entrenchment epistatic coefficient (mean NeE). 5.558 6.208 11.445 7.900

Fraction of consecutive substitutions that are epistatic (E(i,i+1)>0). 0.67 0.69 0.49 0.45

Fraction of consecutive substitutions where path taken by evolution is 30 
times more likely than the alternative. 0.21 0.19 0.20 0.16

Additivity of consecutive substitutions (R2). 0.325 0.308 0.426 0.443

Gaussian fitness landscape semi-Gaussian fitness landscape

100 evolutionary trajectories of 20 substitutions Low sample       
(10 mutations)

High sample    
(100 mutations)

Low sample       
(10 mutations)

High sample    
(100 mutations)

Stability effect of substitutions at their time of fixation (mean |∆∆G|). 0.534 0.508 0.689 0.694

Stability effect of fixed substitutions in other backgrounds (mean |∆∆G|). 0.825 0.808 0.922 0.895

Fraction of substitutions contingent with earlier substitutions (E(i,j)<0). 0.68 0.69 0.52 0.49

Fraction of substitutions entrenched by later substitutions (E(i,j)>0). 0.70 0.70 0.49 0.46

Contingency epistatic coefficient (mean NeE). -3.799 -3.527 -7.802 -5.427

Entrenchment epistatic coefficient (mean NeE). 5.558 6.208 11.445 7.900

Epistatic coefficient between consecutive substitutions (mean NeE(i+1,i)). -4.050 -4.282 -7.203 -4.649

Fraction of consecutive substitutions where path taken by evolution is 30 
times more likely than the alternative. 0.21 0.19 0.20 0.16

Additivity of consecutive substitutions (R2). 0.325 0.308 0.426 0.443

Table S1: Stability and epistatic effects of substitutions remain unchanged along evolutionary
trajectories of the same length under both Gaussian and semi-Gaussian fitness landscapes when
increasing the number of sampled mutations by 10-fold at each step.
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